JIA Hui, LIANG Zheng, ZHANG Yu-qiang etc. Performance Enhancement of Nonpolar AlGaN-MSM Ultraviolet Photodetetors by Different Passivation Layers[J]. Chinese Journal of Luminescence, 2018,39(7): 997-1001
JIA Hui, LIANG Zheng, ZHANG Yu-qiang etc. Performance Enhancement of Nonpolar AlGaN-MSM Ultraviolet Photodetetors by Different Passivation Layers[J]. Chinese Journal of Luminescence, 2018,39(7): 997-1001 DOI: 10.3788/fgxb20183907.0997.
Performance Enhancement of Nonpolar AlGaN-MSM Ultraviolet Photodetetors by Different Passivation Layers
The metal-semiconductor-metal(MSM) structure ultraviolet(UV) photodetector was fabricated on the nonpolar AlGaN grown on
r
-sapphire substrates by metalorganic chemical vapor deposition(MOCVD) using high temperature treatments. The effects of passivation layers by adding SiO
2
nanoparticles(SiO
2
-NPs) or SiO
2
layers (SiO
2
-Ls) on optical and electrical properties of the nonpolar AlGaN-MSM UV photodetector were investigated systematically. The results indicate that the surface passivation of SiO
2
is an important way to enhance the UV performance of the nonpolar AlGaN-MSM UV photodetector. The fabricated devices are characterized by measurements of the dark
I-V
characteristic and the spectral response. It was found that the dark current of the AlGaN-MSM UV photodetector decreased by 1-2 orders of magnitude by SiO
2
-NPs or by SiO
2
-L
which can lower to the order of nA. The detector exhibits a sharp cut-off wavelength at about 300 nm
the spectral response is improved 10
3
times and the ratio of UV to visible reaches as high as 10
5
.
关键词
Keywords
references
ASIF KHAN M, SHATALOV M, MARUSKA H P, et al.. Ⅲ-nitride UV devices[J]. Jpn. J. Appl. Phys., 2005, 44(10):7191-7206.
OZBAY E, BIYIKLI N, KIMUKIN I, et al.. High-performance solar-blind photodetectors based on AlxGa1-xN heterostructures[J]. IEEE J. Select. Top. Quant. Electron., 2004, 10(4):742-751.
XIE F, LU H, CHEN D J, et al.. Large-area solar-blind AlGaN-based MSM photodetectors with ultra-low dark current[J]. Electron. Lett., 2011, 47(16):930-931.
ARANDA F J. Optoelectronic properties of semiconductors and superlattices:Vol. 2, GaN and related materials[J]. Optics Photon. News, 1999(10):66-78.
CHEN H, LIU K, HU L, et al.. New concept ultraviolet photodetectors[J]. Mater. Today, 2015, 18(9):493-502.
KHAN A, BALAKRISHNAN K, KATONA T. Ultraviolet light-emitting diodes based on group three nitrides[J]. Nat. Photon., 2008, 2(2):77-84.
THJEEL H A, SUHAIL A M, NAJI A N, et al.. Fabrication and characteristics of fast photo response ZnO/porous silicon UV photoconductive detector[J]. Adv. Mater. Phys. Chem., 2011, 1(3):387-425.
YANG W, VISPUTE R D, CHOOPUN S, et al.. Ultraviolet photoconductive detector based on epitaxial Mg0.34Zn0.66O thin films[J]. Appl. Phys. Lett., 2001, 78(18):2787-2789.
CHEN X, ZHU H, CAI J, et al.. High-performance 4H-SiC-based ultraviolet p-i-n photodetector[J]. J. Appl. Phys., 2007, 102(2):024505-1-4.
PONCE F A. Microstructure and polarization fields in nitride semiconductors[J]. J. Phys.:Conference Series, 2011, 326:150-154.
RAZEGHI M. Short-wavelength solar-blind detectors-status, prospects, and markets[J]. Proc. IEEE, 2002, 90(6):1006-1014.
CHAKRABORTY A, HASKELL B A, KELLER S, et al.. Nonpolar InGaN/GaN emitters on reduced-defect lateral epitaxially overgrown a-plane GaN with drive-current-Independent electroluminescence emission peak[J]. Appl. Phys. Lett., 2004, 85(22):5143-5145.
NAVARRO A, RIVERA C, PEREIRO J, et al.. High responsivity a-plane GaN-based metal-semiconductor-metal photodetectors for polarization-sensitive applications[J]. Appl. Phys. Lett., 2009, 94(21):3380-3382.
成彩晶, 鲁正雄, 司俊杰, 等. AlGaN MSM紫外探测器[J]. 红外, 2006, 27(5):7-9. CHENG C J, LU Z X, SI J J, et al.. AlGaN MSM UV photodetector[J]. Infrared, 2006, 27(5):7-9. (in Chinese)
杨洪权. 非极性AlGaN材料生长及探测器制备技术研究[D]. 南京:东南大学, 2016. YANG H Q. Study on The Growth of Non-polar AlGaN Epi-layers and The Fabrication Technology for GaN-based Photodetectors[D]. Nanjing:Southeast Univenity, 2016. (in Chinese)
HSU J W P, MANFRA M J, MOLNAR R J, et al.. Direct imaging of reverse-bias leakage through pure screw dislocations in GaN films grown by molecular beam epitaxy on GaN templates[J]. Appl. Phys. Lett., 2002, 81(1):79-81.
MORKOC H, DI CARLO A, CINGOLANI R, GaN-based modula tion doped FETs and UV detectors[J]. Solid-State Electron., 2002, 46:157-202.
ROGALSKI M, ROGALSKI A. Semiconductor ultraviolet detectors[J]. J. Appl. Phys., 1996, 79(10):7433-7473.
HERRERA M, CHI M, BONDS M, et al.. Atomic scale analysis of the effect of the SiO2 passivation treatment on InAs/GaSb superlattice mesa sidewall[J]. Appl. Phys. Lett., 2008, 93(9):093106-1-3.
KAWAHARA N, TOMITA E, KAGAJYO H. Homogeneous charge compression ignition combustion with dimethyl ether-Spectrum analysis of chemiluminescence[J]. Sae Trans., 2003, 112:1214-1221.
WANG C, CHO S J, KIM N Y. Comparison of SiO2-based double passivationscheme by e-beam evaporation and PECVD for surface passivation and gate oxide in AlGaN/GaN HEMTs[J]. Microelectron. Eng., 2013, 109(C):24-27.
CARRANO J C, LI T, GRUDOWSKI P A, et al.. Comprehensive characterization of metal-semiconductor-metal ultraviolet photodectors fabricated[J]. J. Appl. Phys., 1998, 83(11):6148-6160.
Highly Efficient Perovskite Solar Cells and Modules Enabled by In-situ Modification of Buried Interface
Passivation of Perovskite Buried-interface Using Phenethylamine for Enhanced Solar Cell Performance
Surface and Luminescence Properties of GaAs(100) by Hydrazine Solution Passivation
Passivation of GaAs(100) Surface by 1-Octadecanethiol
Effect of Light Soaking on Photoluminescence Quantum Efficiency of CH3NH3PbI3 Films
Related Author
LIU Chong
GONG Jian
CHEN Qian
YANG Huidong
MA Meng’en
LI Weile
WANG Yao
YAN Weibo
Related Institution
Faculty of Intelligent Manufacturing, Wuyi University
Institute of New Energy Technology, College of Information Science and Technology, Jinan University
State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications
State Key Laboratory of High Power Semiconductor Lasers, Changchun University of Science and Technology