ZHANG Mei-ling, ZHOU Jin, ZHANG Li etc. Enhancement of NaErF<sub>4</sub> Nanostructure Upconversion Luminescence with K<sup>+</sup> Doping[J]. Chinese Journal of Luminescence, 2018,39(7): 903-908
ZHANG Mei-ling, ZHOU Jin, ZHANG Li etc. Enhancement of NaErF<sub>4</sub> Nanostructure Upconversion Luminescence with K<sup>+</sup> Doping[J]. Chinese Journal of Luminescence, 2018,39(7): 903-908 DOI: 10.3788/fgxb20183907.0903.
Enhancement of NaErF4 Nanostructure Upconversion Luminescence with K+ Doping
doping mole fraction in the cores. XRD results reveal that all of the nanoparticles are the hexagonal structure. The research results show that the intensity of UCL at~650 nm increases at first and then decreases with K
+
concentration under 980 nm excitation. The intensity is enhanced 3.7 times with 4% K
+
doping
compared with that of NaErF
4
@NaLuF
4
core@shell without K
+
doping. Furthermore
the slopes of relationship between UCL intensity and pumping power are from 1.91 to 1.76
for the two nanostructures undoped and doped with 4% K
+
respectively. Our results suggest that the strategy of K
+
doping in NaErF
4
@NaLuF
4
nanoparticles is an efficient solution to improve the luminescence efficiency of NaErF
4
@NaLuF
4
nanosystem.
关键词
Keywords
references
CHATTERJEE D K, RUFAIHAH A J, ZHANG Y. Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals[J]. Biomaterials, 2008, 29(7):937-943.
WANG F, BANERJEE D, LIU Y, et al.. Upconversion nanoparticles in biological labeling, imaging, and therapy[J]. Analyst, 2010, 135(8):1839-1854.
HEER S, KMPE K, GVDEL H U, et al.. Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4nanocrystals[J]. Adv. Mater., 2004, 16(23-24):2102-2105.
李慧, 杨魁胜, 祁宁, 等. Yb3+/Er 3+ 掺杂氟氧化物微晶玻璃的制备与发光性能[J]. 中国光学, 2011, 4(6):672-677. LI H, YANG K S, QI N, et al.. Preparation and luminescence properties of Yb3+/Er3+-codoped oxyfluoride glass ceramics[J]. Chin. Opt., 2011, 4(6):672-677. (in Chinese)
臧雪梅, 田亚蒙, 赵昕, 等. 钬镱掺杂波导适用型锗酸盐玻璃上转换荧光光子定量[J]. 光子学报, 2016, 45(9):916002. ZANG X M, TIAN Y M, ZHAO X, et al.. Quantification of photon upconversion in holmium and ytterbium doped waveguide-typed germanate glasses[J]. Acta Photon. Sinica, 2016, 45(9):916002. (in Chinese)
BOYER J C, VAN VEGGEl F C J M. Absolute quantum yield measurements of colloidal NaYF4:Er3+, Yb3+ upconverting nanoparticles[J]. Nanoscale, 2010, 2(8):1417-1419.
吴中立, 吴红梅, 唐立丹, 等. Tm3+/Yb3+共掺氟氧化物碲酸盐玻璃的上转换发光及光学温度传感[J]. 光子学报, 2017, 46(9):916003. WU Z L, WU H M, TANG L D, et al.. Up-conversion light-emitting and optical temperature sensing for Tm3+/Yb3+ codoped oxyfluoride tellurite glass[J]. Acta Photon. Sinica, 2017, 46(9):916003. (in Chinese)
VETRONE F, NACCACHE R, MAHALINGAM V, et al.. The active-core/active-shell approach:a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles[J]. Adv. Funct. Mater., 2009, 19(18):2924-2929.
HAASE M, SCHAEFER H. Upconverting nanoparticles[J]. Angew. Chem. Int. Ed., 2011, 50(26):5808-5829.
ZHONG Y, TIAN G, GU Z, et al.. Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+ sensitized nanoparticles[J]. Adv. Mater., 2014, 26(18):2831-2837.
JOHNSON N J J, HE S, DIAO S, et al.. Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals[J]. J. Am. Chem. Soc., 2017, 139(8):3275-3282.
ZUO J, LI Q, XUE B, et al.. Employing shell to eliminate concentration quenching in photonic upconversion nanostructure[J]. Nanoscale, 2017, 9(23):7941-7946.
JUDD B R. Optical absorption intensities of rare-earth ions[J]. Phys. Rev., 1962, 127(3):750-761.
丁艳丽, 张晓丹, 梁雪娇, 等. Na+掺杂对LiYF4:Er3+/Yb3+上转换发光性能的影响[J]. 发光学报, 2014, 35(5):536-541. DING Y L, ZHANG X D, LIANG X J, et al.. Influence of Na+ doping on upconversion luminescence of LiYF4:Er3+/Yb3+ microcrystals[J]. Chin. J. Lumin., 2014, 35(5):536-541. (in Chinese)
ZHAO C, KONG X, LIU X, et al.. Li+ ion doping:an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles[J]. Nanoscale, 2013, 5(17):8084-8089.
翟雪松, 刘世虎, 范柳燕, 等. 强上转换发光的LiLu1-xYbxF4:Tm@LiGdF4核壳纳米晶的制备[J]. 发光学报, 2017, 38(9):1149-1154. ZHAI X S, LIU S H, FAN L Y, et al.. Preparation of LiLu1-xYbxF4:Tm@LiGdF4 core-shell nanocrystals with enhanced upconversion luminescence[J]. Chin. J. Lumin., 2017, 38(9):1149-1154. (in Chinese)
QIAN H S, ZHANG Y. Synthesis of hexagonal-phase core-shell NaYF4 nanocrystals with tunable upconversion fluorescence[J]. Langmuir, 2008, 24(21):12123-12125.
POLLNAU M, GAMELIN D R, LVTHI S R, et al.. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems[J]. Phys. Rev. B, 2000, 61(5):3337.
Dual-mode Optical Thermometry with High Sensitivity Achieved in Na3Y(VO4)2∶Yb3+/Er3+
Structure Change of GdF3:Yb3+,Er3+ and Influence on Properties of Upconversion Luminescence by High Temperature Annealing
Synthesis and Temperature Sensing of CaF2: Er3+,Yb3+ Nanoparticles with Upconversion Fluorescence
Upconversion Optical Temperature Sensing of YbNbO4∶Ho3+ with Host Sensitization
Related Author
XIANG Guotao
YI Yuanyuan
ZHANG Yu
XIONG Ming
XU Qinyu
CHEN Hongdou
CHANG Ying
YAO Lu
Related Institution
Department of Mathematics and Physics, Chongqing University of Posts and Telecommunications
Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University
Coherent Light and Atomic and Molecular Spectroscopy Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University
Department of Physics, Georgia Southern University, Statesboro
Department of Mathematics and Physics, Chongqing University of Posts and Telecommunications, 2 Chongwen Road