NIU Shuai-bin, HOU Shang-lin, LEI Jing-li etc. Influence of Structure and Doping on Stimulated Brillouin Scattering Fast Light in Photonic Crystal Fibers[J]. Chinese Journal of Luminescence, 2018,39(6): 884-890
NIU Shuai-bin, HOU Shang-lin, LEI Jing-li etc. Influence of Structure and Doping on Stimulated Brillouin Scattering Fast Light in Photonic Crystal Fibers[J]. Chinese Journal of Luminescence, 2018,39(6): 884-890 DOI: 10.3788/fgxb20183906.0884.
Influence of Structure and Doping on Stimulated Brillouin Scattering Fast Light in Photonic Crystal Fibers
Time advancement of fast light in small signal regime was derived from three wave coupling equations of stimulated Brillouin scattering(SBS) in photonic crystal fibers(PCFs)
and the influence of air-filling ratio and doping(doped GeO
2
) on Brillouin frequency shift
time advancement
pulse broadening factor and pulse deformation were simulated by full vectorial finite element method. The results show that the Brillouin frequency shift decreases with the increase of air-filling ratio and doping mass fraction. The time advancement increases with the increase of air filling factor
but decreases with the increase of doping mass fraction at a given pump power of 20 mW and fiber length of 10 m. The varying trend of broadening factor is just contrary to that of the time advancement. The time advancement of 29.7 ns and the pulse broadening factor of 0.88 are achieved at the air filling factor of 0.8 and GeO
2
doping mass fraction of 18%. The Brillouin threshold decreases with the increment of filling factor and decrement of doping mass fraction.
关键词
Keywords
references
HAU L V, HARRIS S E, DUTTON Z, et al.. Light speed reduction to 17 metres per second in an ultracold atomic gas[J]. Nature, 1999, 397:594-598.
KASH M M, SAUTENKOV V A, ZIBROV A S, et al.. Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas[J]. Phys. Rev. Lett., 1999, 82(26):5229-5232.
CHU S, WONG S. Linear pulse propagation in an absorbing medium[J]. Phys. Rev. Lett., 1982, 48(11):738-741.
STENNER M D, GAUTHIER D J, NEIFELD M A. The speed of information in a "fast-light" optical medium[J]. Nature, 2003, 425:695-698.
BOYD R W, GAUTHIER D J. Controlling the velocity of light pulses[J]. Science, 2009, 326:1074-1077.
HARRIS S E, FIELD J E, IMAMOGLU A. Nonlinear optical processes using electromagnetically induced transparency[J]. Phys. Rev. Lett., 1991, 64(10):1107-1110.
HILLMAN L W, BOYD R W, KRASINSKI J, et al.. Observation of a spectral hole due to population oscillations in a homogeneously broadened optical absorption line[J]. Opt. Commun., 1983, 45(6):416-419.
MORI D, BABA T. Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide[J]. Opt. Express, 2005, 13(23):9398-9408.
HAO R, CASSAN E, LE R X, et al.. Improvement of delay-bandwidth product in photonic crystal slow-light waveguides[J]. Opt. Express, 2010, 18(16):16309.
PISCO M, RICCIARDI A, CAMPOPIANO S, et al.. Fast and slow light in optical fibers through tilted fiber Bragg gratings[J]. Opt. Express, 2009, 17(26):23502-23510.
SHARPING J, OKAWACHI Y, GAETA A. Wide bandwidth slow light using a Raman fiber amplifier.[J]. Opt. Express, 2005, 13(16):6092.
OKAWACHI Y, BIGELOW M S, SHARPING J E, et al. Tunable all-optical delays via Brillouin slow light in an optical fiber[C]. Lasers and Electro-Optics. IEEE, Sydney, Australia, 2005:511-513.
DAHAN D, EISENSTEIN G. Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier:a route to all optical, buffering[J]. Opt. Express, 2005, 13(16):6234.
THEVENAZ L. Slow and fast light in optical fibers:review and perspectives[C]. Lasers and Electro-Optics, 2009 and 2009 Conference on Quantum electronics and Laser Science Conference, IEEE, Belek-Antalya, Turkey, 2009:1-2.
HASSANI A, DUPUIS A, SKOROBOGATIY M. Low loss porous terahertz fibers containing multiple subwavelength holes[J]. Appl. Phys. Lett., 2008, 92(7):071101-1-3.
SINHA R K, KUMAR A, SAINI T S. Analysis and design of single-mode As2Se3-chalcogenide photonic crystal fiber for generation of slow light with tunable features[J]. IEEE J. Select. Top. Quant. Electron., 2016, 22(2):1-6.
KALOSHA V P, CHEN L, BAO X. Slow and fast light via SBS in optical fibers for short pulses and broadband pump[J]. Opt. Express, 2007, 14(26):12693-12703.
KALOSHA V P, CHEN L, BAO X. Slow light of subnanosecond pulses via stimulated Brillouin scattering in nonuniform fibers[J]. Phys. Rev. A, 2007, 75(2):441-445.
QIN G, SOTOBAYASHI H, TSUCHIYA M, et al.. Stimulated Brillouin scattering in a single-mode tellurite fiber for amplification, lasing, and slow light generation[J]. J. Lightwave Technol., 2008, 26(5):492-498.
AGRAWAL G. Applications of Nonlinear Fiber Optics[M]. Oxford:Cademic Press, 2001.
KOYAMADA Y, SATO S, NAKAMURA S, et al.. Simulating and designing Brillouin gain spectrum in single-mode fibers[J]. J. Lightwave Technol., 2004, 22(2):631-639.
CHENG T, LIAO M, GAO W, et al.. Suppression of stimulated Brillouin scattering in all-solid chalcogenide-tellurite photonic bandgap fiber[J]. Opt. Express, 2012, 20(27):28846-54.
DASGUPTA S, POLETTI F, LIU S, et al.. Modeling Brillouin gain spectrum of solid and microstructured optical fibers using a finite element method[J]. J. Lightwave Technol., 2011, 29(1):22-30.
JAIN V, SHARMA S, SAINIT S, et al.. Design and analysis of single-mode tellurite photonic crystal fibers for stimulated Brillouin scattering based slow-light generation[J]. Appl. Opt., 2016, 55(25):6791.