浏览全部资源
扫码关注微信
山西师范大学 生命科学院, 山西 临汾 041004
Received:04 August 2017,
Revised:25 October 2017,
Published Online:12 January 2018,
Published:05 June 2018
移动端阅览
武建露, 闫桂琴,. 基于氮掺杂碳量子点/DNA自组装纳米探针检测鱼精蛋白[J]. 发光学报, 2018,39(6): 870-876
WU Jian-lu, YAN Gui-qin,. Detection of Protamine Based on Nitrogen Doped Carbon Quantum Dot/DNA Self-assembled Nano Probe[J]. Chinese Journal of Luminescence, 2018,39(6): 870-876
武建露, 闫桂琴,. 基于氮掺杂碳量子点/DNA自组装纳米探针检测鱼精蛋白[J]. 发光学报, 2018,39(6): 870-876 DOI: 10.3788/fgxb20183906.0870.
WU Jian-lu, YAN Gui-qin,. Detection of Protamine Based on Nitrogen Doped Carbon Quantum Dot/DNA Self-assembled Nano Probe[J]. Chinese Journal of Luminescence, 2018,39(6): 870-876 DOI: 10.3788/fgxb20183906.0870.
将柠檬酸置于单乙醇胺中,通过简单加热实现快速、大规模的合成氮掺杂荧光碳点。所得氮掺杂碳量子点被370 nm 的光激发后在458 nm 处有较强的荧光发射,最大吸收波长为365.085 nm。脱氧核糖核苷酸能增强该碳量子点的荧光且具有相关线性关系,因而制备了氮掺杂碳点与脱氧核糖核苷酸的杂交纳米复合物(纳米探针),并首次用于检测鱼精蛋白。在实验条件最佳情况下,该方法简便、选择性好,该分析方法的线性检测范围为1~10 gmL
-1
,检出限可达0.61 gmL
-1
。
The citric acid was placed in monoethanolamine to achieve fast and large-scale synthesis of nitrogen doped fluorescent carbon dots by simple heating. When the NCDs are excited by 370 nm
there is a strong fluorescence emission at 458 nm
and the maximum absorption wavelength is 365.085 nm. DNA can enhance the fluorescence of the carbon quantum dots and has a related linear relationship. Thus
a hybrid nanocomposite(Nano probe) with nitrogen doped carbon dots and DNA was prepared. The method was first used to detect protamine. Under the optimum experimental conditions
the method is simple and selective. The linear detection range of this method is 1-10 gmL
-1
and the detection limit is up to 0.61 gmL
-1
.
JAQUES L B. Protamine-antagonist to heparin[J]. Can. Med. Assoc. J., 1973, 108:1291-1297.
POTTER R, HANSEN L T, GILL T A. Inhibition of foodborne bacteria by native and modified protamine:importance of electrostatic interactions[J]. Int. J. Pharm., 2012, 425:35-43.
JOAQUIM C G, DA SILVA E, HELENA M R, et al.. Analytical and bioanalytical applications of carbon dots[J]. Anal. Chem., 2011, 30(8):1327-1336.
BAKER S N, BAKER G A. Luminescent carbon nanodots:emergent nanolights[J]. Angew. Chem. Int. Ed., 2010, 49:6726-6744.
LIU J H, LI J S, JIANG Y, et al.. Combination of p-p stacking and electrostatic repulsion between carboxylic carbon nanoparticles and fluorescent oligonucleotides for rapid and sensitive detection of thrombin[J]. Chem. Commun., 2011, 47:11321-11323.
HAMISHEHKAR H, GHASEMZADEH B, NASERI A, et al.. Carbon dots preparation as a fluorescent sensing platform for highly efficient detection of Fe(Ⅲ) ions in biological systems[J]. Spectrochim. Acta A, 2015, 150:934-939.
ZHAO J J, ZHAO L M, LAN C Q, et al.. Graphene quantum dots as effective probes for label-free fluorescence detection of dopamine[J]. Sens. Actuators B-Chem., 2016, 223:246-251.
WANG G L, FANG X, WU X M, et al.. Label-free and ratiometric detection of nuclei acids based on grapheme quantum dots utilizing cascade amplification by nicking endonuclease and catalytic G-quadruplex DNAzyme[J]. Biosens. Bioelectron., 2016, 81:214-220.
WU X, TIAN F, WANG W X, et al.. Fabrication of highly fluorescent graphene quantum dots using L-glutamic acid for in vitro/in vivo imaging and sensing[J]. Mater. Chem. C, 2013, 1:4676-4684.
HU Y P, YANG J, TIAN J W, et al.. How do nitrogen-doped carbon dots generate from molecular precursors? An investigation of the formation mechanism and a solution-based large-scale synthesis[J]. Mater. Chem. B, 2015, 3:5608-5614.
LIU S, TIAN J Q, WANG L, et al.. Hydrothermal treatment of grass:a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(Ⅱ) ions[J]. Adv. Mater., 2012, 24:2037-2041.
SHVAREV A, BAKKER E. Reversible electrochemical detection of nonelectroactive polyions[J]. J. Am. Chem. Soc., 2003, 125:11192-11193.
ZHAO J N, YI Y H, MI N X, et al.. Gold nanoparticle coupled with fluorophore for ultrasensitive detection of protamine and heparin[J]. Talanta, 2013, 116:951-957.
SNYCERSKI A, DUDKIEWICZ-WILCZYNSKA J, TAUTT J. Determination of protamine sulphate in drug formulations using high performance liquid chromatography[J]. J. Pharmaceut. Biomed. Anal., 1998, 18(4-5):907-910.
AWOTEW-OTOO D, AGARABI C, FAUSTINO P J, et al.. Application of quality by design elements for the development and optimization of an analytical method for protamine sulfate[J]. J. Pharmaceut. Biomed., 2012, 62:61-67.
0
Views
242
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution