HE Xu, WU Li-li, REN Sheng-qiang etc. First-principles GGA+<em>U</em> Investigation on The Electronic Structure and Optical Properties of Zn<sub>1-<em>x</em></sub>Mg<sub><em>x</em></sub>O[J]. Chinese Journal of Luminescence, 2018,39(6): 795-801
HE Xu, WU Li-li, REN Sheng-qiang etc. First-principles GGA+<em>U</em> Investigation on The Electronic Structure and Optical Properties of Zn<sub>1-<em>x</em></sub>Mg<sub><em>x</em></sub>O[J]. Chinese Journal of Luminescence, 2018,39(6): 795-801 DOI: 10.3788/fgxb20183906.0795.
First-principles GGA+U Investigation on The Electronic Structure and Optical Properties of Zn1-xMgxO
0.25)which has wide band gap and tunable electronic properties. So ZMO has a large application in transparency electrode of thin-film solar cells and optoelectronic device. The electronic structure and optical properties of ZMO ternary alloys were calculated using first-principles calculations based on the density functional theory combined with GGA+
U
approach. The calculation results show that the doping of magnesium leads to an apparent change of the electronic structure of ZMO. With Mg concentration increasing
the band gap of ZMO widens from 3.32 eV(
x
=0) to 3.78 eV(
x
=0.25). In addition
the absorption edge exhibits a blue shift with Mg concentration increasing. At the same time
the reflectivity and loss-function show mainly in the ultra-violet region
which is similar to those of optical absorption. The calculation results are in good agreement with the experiment.
关键词
Keywords
references
MAKINO T, SEGAWA Y, KAWASAKI M, et al.. Band gap engineering based on MgxZn1-xO and CdyZn1-yO ternary alloy film[J]. Appl .Phys. Lett., 2001, 78:12-37.
陈晓航, 康俊勇. MgxZn1-xO结构性质[J]. 发光学报, 2006, 27(5):761-765. CHEN X H, KANG J Y. The structure properties of MgxZn1-xO[J]. Chin. J. Lumin., 2006, 27(5):761-765. (in Chinese)
KEPHART JM, MCCAMY JW, MA Z, et al.. Band alignment of front contact layers for high-efficiency CdTe solar cells[J]. Solar Energy Mate. Solar Cells, 2016,157:266-275.
申德振, 梅增霞, 梁会力, 等. 氧化锌基材料、异质结构及光电器件[J]. 发光学报, 2014, 35(1):1-60. SHEN D Z, MEI Z X, LIANG H L, et al.. ZnO-based material, heterojunction and photoelctronic device[J]. Chin. J. Lumin., 2014, 35(1):1-60. (in Chinese)
OHTOMO A, KAWASAKI M, KOIDA T, et al.. MgxZn1-xO as a Ⅱ-Ⅵ wide gap semiconductor alloy[J]. Appl. Phys. Lett., 1998, 72:2466-2468.
OHTOMO A, TAMURA K, KAWASAKI M, et al.. Room-temperature stimulated emission of excitons in ZnO/(Mg, Zn)O superlattices[J]. Appl. Phys. Lett., 2000, 77(14):2204-2206.
TAKASHI M, YASUHIRO H, TAKUYA S, et al.. Cu(In, Ga)Se2 solar cells with controlled conduction band offset of window/Cu(In,Ga)Se2 layers[J]. J. Appl. Phys., 2001, 89:8327-8330.
CHIO C H, KIM S H. Effects of post-annealing temperature on structural, optical, and electrical properties of ZnO and Zn1-xMgxO films by reactive RF magnetron sputtering[J]. J. Cryst. Growth, 2005, 283(1-2):170-179.
KUMAR P, MALIK H K, GHOSH A, et al.. Bandgap tuning in highly c-axis oriented Zn1-xMgxO thin films[J]. Appl. Phys. Lett., 2013, 102(22):041301.
张德恒, 张锡健, 王卿璞, 等. MgZnO薄膜及其量子阱和超晶格的发光特性[J]. 发光学报, 2004, 25(2):111-116. ZHANG D H, ZHANG X J, WANG Q P, et al.. Luminescence characteristic of MgZnO films and multiquantum wells and superlattices[J]. Chin. J. Lumin., 2004, 25(2):111-116. (in Chinese)
靳锡联, 娄世云, 孔德国, 等. Mg掺杂ZnO所致的禁带宽度增大现象研究[J]. 物理学报, 2006, 55(9):4809-4815. JIN X L, LOU S Y, KONG D G, et al.. Investigation on the broadening of band gap of wurtzite ZnO by Mg-doping[J]. Acta Phys.Sinica, 2006, 55(9):4809-4815. (in Chinese)
史秀洋, 苏希玉, 王梅. Li掺杂ZnO系统的电子结构和光学性质[J]. 发光学报, 2014, 35(12):1455-1458. SHI X Y, SU X Y, WANG M. Electronic structure and optical properties of Li-doped ZnO systems[J]. Chin. J. Lumin., 2014, 35(12):1455-1458. (in Chinese)
ZHANG X D, GUO M L, LIU C L, et al.. First-principles investigation of electronic and optical properties in wurtzite Zn1-x MgxO[J]. Eur. Phys. J. B, 2008, 62:417-421.
吴孔平, 王智, 陈昌兆, 等. 纤锌矿Zn1-xMgxO极化特性的第一性原理GGA+U方法研究[J]. 发光学报, 2015, 36(5):497-501. WU K P, WANG Z, CHEN C Z, et al.. Polarization properties of wurtzite structure Zn1-xMgxO:A GGA+U investigation[J]. Chin. J. Lumin., 2015, 36(5):497-501. (in Chinese)
CLARK S J, SEGALL M D, PICKARD C J, et al.. First principles methods using CASTEP[J]. J. Phys.:Condens. Matter, 2005, 14:567-570.
AHMED R, HASHEMIFAR SJ, AKBARZADEH H, et al.. Ab initio study of structural and electronic properties of Ⅲ-arsenide binary compounds[J]. Comput. Mater. Sci., 2007, 39(3):580-586.
FISCHER T H, ALMLOF J. General methods for geometry and wave function optimization[J]. J. Phys. Chem., 1992, 96(24):9768-9774.
KARKI B B, ACKLAND G J, CRAIN J. Elastic instabilities in crystals from ab initio stress-strain relations[J].J. Phys.:Condens. Matter, 1997, 9(41):8579-8589.
HOLM B, AHUJA R, YOURDSHAHYAN Y, et al.. Elastic and optical properties of -and -Al2O3[J]. Phys. Rev. B, 1999, 59(20):75639-12787.
ODAKA H, IWATA S, TAGA N, et al.. Study on electronic structure and optoelectronic properties of indium oxide by first-principles calculations[J]. Jpn. J. Appl. Phys., 1997, 36(36):5551-5554.
SHEETZ R M, PONOMAREVA I, RICHTER E, et al.. Defect-induced optical absorption in the visible range in ZnO nanowires[J]. Phys. Rev. B:Condens. Matter, 2009, 80(19):195314-1-4.