浏览全部资源
扫码关注微信
1. 浙江贝盛光伏股份有限公司,浙江 湖州,313008
2. 湖州师范学院理学院 应用物理系,浙江 湖州,313000
3. 浙江创盛能源有限公司, 浙江 湖州 313008
Received:21 September 2017,
Revised:27 December 2017,
Published Online:05 March 2018,
Published:05 June 2018
移动端阅览
邱小永, 赵庆国, 陆波等. 工业级纳米绒面多晶硅太阳电池的制备及其性能研究[J]. 发光学报, 2018,39(6): 777-783
QIU Xiao-yong, ZHAO Qing-guo, LU Bo etc. Fabrication and Performance of Nano-textured Multi-crystalline Silicon Solar Cells for Industrial Production[J]. Chinese Journal of Luminescence, 2018,39(6): 777-783
邱小永, 赵庆国, 陆波等. 工业级纳米绒面多晶硅太阳电池的制备及其性能研究[J]. 发光学报, 2018,39(6): 777-783 DOI: 10.3788/fgxb20183906.0777.
QIU Xiao-yong, ZHAO Qing-guo, LU Bo etc. Fabrication and Performance of Nano-textured Multi-crystalline Silicon Solar Cells for Industrial Production[J]. Chinese Journal of Luminescence, 2018,39(6): 777-783 DOI: 10.3788/fgxb20183906.0777.
基于产线工艺制备了纳米绒面多晶硅太阳电池,并表征其光电转换性能。研究结果表明:相对传统微米绒坑,纳米绒面能够提升多晶硅太阳电池的短路电流,相应的光电转换效率绝对值提升大于0.4%,产线均值光电转换效率超过了19.1%。结合漫反射光谱和外量子效率测试结果,改进的光电转换的原因归结为纳米绒面能够有效地诱捕短波和长波太阳光子,增强短波和长波太阳光响应。本研究证实纳米绒面多晶硅太阳电池可利用产线工艺制备且具有较高的光电转换效率,能够实现产业化。
Nano-textured multi-crystalline silicon solar cells were fabricated on industrial production line. The nano-textured multi-crystalline silicon solar cells showed an improved short-circuit current as compare to traditional multi-crystalline silicon solar cells
and resulting in an increasing amount of >0.4% for power conversion efficiency and up to 19.1%. The light reflectance spectra and the external quantum efficiency of the nano-textured multi-crystalline silicon solar cells were investigated. The improved power conversion efficiency was attributed to enhanced light trapping and light response by the nano-structure. The results confirm that the nano-textured multi-crystalline silicon solar cells can be produced by using the industrial production process
and has high power conversion efficiency.
FORSTNER H, BANDIL S, ZWEGERS M, et al.. International technology roadmap for photovoltaic(ITRPV)[R/OL]. 7th ed. http://www.itrpv.net/.
NISHIMOTO Y, ISHIHARA T, NAMBA K. Investigation of acidic texturization for multicrystalline silicon solar cells[J]. J. Electrochem. Soc., 1999, 146:457-461.
CHENG Y T, HO J J, TSAI S Y, et al.. Efficiency improved by acid texturization for multi-crystalline silicon solar cells[J]. Solar Energy, 2011, 85:87-94.
DUTTAGUPTA S, MA F, HOEX B, et al.. Optimised antireflection coatings using silicon nitride on textured silicon surfaces based on measurements and multidimensional modelling[J]. Energy Procedia, 2012, 15:78-83.
LIU B, QIU S, CHEN N, et al.. Double-layered silicon nitride antireflection coatings for multicrystalline silicon solar cells[J]. Mater. Sci. Semicond. Proc., 2013, 16:1014-1021.
SEIDEL H, CSEPREGI L, HEUBERGER A, et al.. Anisotropic etching of crystalline silicon in alkaline solutions[J]. J. Electrochem. Soc., 1990, 137:3612-3626.
PENG K Q, XU Y, WU Y, et al.. Aligned single-crystalline Si nanowire arrays for photovoltaic applications[J]. Small, 2005, 1:1062-1067.
SRIVASTAVA S K, KUMAR D, SINGH P K, et al.. Excellent antireflection properties of vertical silicon nanowire arrays[J]. Solar Energy Mater. Solar Cells, 2010, 94:1506-1511.
HUANG Y F, CHATTOPADHYAY S, JEN Y J, et al.. Improved broadband and quasiomnidirectional anti-reflection properties with biomimetic silicon nanostructures[J]. Nat. Nanotechnol. 2007, 2:770-774.
OH J, YUAN H C, BRANZ H M. An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures[J]. Nat. Nanotech., 2012, 7:743-748.
HUANG Z, ZHONG S, HUA X, et al.. An effective way to simultaneous realization of excellent optical and electrical performance in large scale Si nano/microstructures[J]. Prog. Photovolt.:Res. Appl., 2015, 23(8):964-972.
ZHONG S, HUANG Z, LIN X, et al.. High efficiency nanostructured silicon solar cells on a large scale realized through the suppression of recombination channels[J]. Adv. Mater., 2015, 27:555-561.
ZHANG M L, PENG K Q, FAN X, et al.. Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching[J]. J. Phys. Chem. C, 2008, 112(12):4444-4450.
RUBY D S, ZAIDI S H, NARAYANAN S, et al.. Rie-texturing of multicrystalline silicon solar cells[J]. Solar Energy Mater. Solar Cells, 2002, 74:133-137.
LIU S, NIU X, SHAN W, et al.. Improvement of conversion efficiency of multicrystalline silicon solar cells by incorporating reactive ion etching texturing[J]. Solar Energy Mater. Solar Cells, 2014, 127:21-26.
FENG P, LIU G, WU W, et al.. Improving the blue response and efficiency of multicrystalline silicon solar cells by surface nanotexturing[J]. IEEE Electron Dev. Lett., 2016, 37:306-309.
吕文辉, 陆波, 龚熠, 等. 多晶硅太阳电池背表面刻蚀提升其性能的产线工艺研究[J]. 光电子激光, 2016, 27(6):606-612. LU W H, LU B, GONG Y, et al.. Enhanced power conversion efficiency in multi-crystalline silicon solar cells using back surface etching for industrial production line application[J]. J. Optoelectron. Laser, 2016, 27(6):606-612. (in Chinese)
吕文辉, 何一峰, 龚熠, 等. 双层氮化硅减反、钝化结构对多晶硅太阳电池性能的影响[J]. 半导体光电, 2016, 37(5):707-711. LU W H, HE Y F, GONG Y, et al.. Effect of double-layer SiNx antireflection/passivation coating on performance of multi-crystalline silicon solar cells[J]. Semicond. Optoelectron., 2016, 37(5):707-711. (in Chinese)
YE X Y, ZOU S, CHEN K X, et al.. 18.45%-efficient multi-crystalline silicon solar cells with novel nanoscale pseudo-pyramid texture[J]. Adv. Funct. Mater. 2014, 24:6708-6716.
KESSELS W E, SCHULTZ O, BENICK J, et al.. High efficiency n-type Si solar cells on Al2O3-passivated boron emitters[J]. Appl. Phys. Lett., 2008, 92:253504.
0
Views
262
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution