LI Yang-yang, LI Da-guang, ZHANG Dan etc. Growth Process and Upconversion Luminescence of NaLuF<sub>4</sub>:Yb<sup>3+</sup>/Tm<sup>3+</sup> Nanocrystals[J]. Chinese Journal of Luminescence, 2018,39(6): 764-770
LI Yang-yang, LI Da-guang, ZHANG Dan etc. Growth Process and Upconversion Luminescence of NaLuF<sub>4</sub>:Yb<sup>3+</sup>/Tm<sup>3+</sup> Nanocrystals[J]. Chinese Journal of Luminescence, 2018,39(6): 764-770 DOI: 10.3788/fgxb20183906.0764.
Growth Process and Upconversion Luminescence of NaLuF4:Yb3+/Tm3+ Nanocrystals
nanomaterials by using a self-developed automatic nanomaterial synthesizer which can precisely control the experimental parameters. The phase analysis of samples prepared at different reaction temperatures(285
295
305℃) shows that the NaLuF
4
nanocrystals follow the similar growth law with the increase of reaction time. We can obtain pure -NaLuF
4
nanocrystals with small size(less than 50 nm)
monodispersity
and narrow size distribution at different temperatures. On the other hand
we measured the upconversion spectra of -NaLuF
4
:Yb
3+
/Tm
3+
nano-materials which prepared under 285
295
and 305℃. These results indicate that the luminescence intensity of samples increase first and then decrease with the increase of reaction temperature. In addition
the luminescence of sample in ultraviolet region is stronger than that of the near-infrared region. For example
the intensity of 361 nm emission peak is twice large compared to that of 800 nm emission peak
which makes the nano-material suitable for near-infrared excited ultraviolet sensitive materials.
关键词
Keywords
references
HEER S, KOMPE K, GUDEL H U, et al.. Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals[J]. Adv. Mater., 2004, 16(23-24):2102-2105.
ZHOUJ, WU Z, ZHANG Z, et al.. Study on an antiwear and extreme pressure additive of surface coated LaF3 nanoparticles in liquid paraffin[J]. Wear, 2001, 249(5):333-337.
WANG X, LI Y. Fullerene-like rare-earth nanoparticles[J]. Angew. Chem. Int. Ed., 2003, 42(30):3497-3500.
SIVAKUMAR S, VAN VEGGEL F C M, RAUDSEPP M. Bright white light through up-conversion of a single NIR source from sol-gel-derived thin film made with Ln3+-doped LaF3 nanoparticles[J]. J. Am. Chem. Soc., 2005, 127(36):12464-12465.
COOKE A, JONES D, SILVA J, et al.. Ferromagnetism in lithium holmium fluoride-LiHoF4. I. Magnetic measurements[J]. J. Phys. C:Solid State Phy., 1975, 8(23):4083.
CHOI B, MOON B, SEO H, et al.. Dielectric and ionic conduction properties in LiYF4 single crystals[J]. Mater. Design, 2000, 21(6):567-570.
GHOSH S, ROSENBAUM T, AEPPLI G, et al.. Entangled quantum state of magnetic dipoles[J]. Nature, 2003, 425(6953):48-51.
LIANG L, XU H, SU Q, et al.. Hydrothermal synthesis of prismatic NaHoF4 microtubes and NaSmF4 nanotubes[J]. Inorg. Chem., 2004, 43(5):1594-1596.
YI G, LU H, ZHAO S, et al.. Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb, Er infrared-to-visible up-conversion phosphors[J]. Nano Lett., 2004, 4(11):2191-2196.
KARBOWIAK M, MECH A, BEDNARKIEWICZ A, et al.. Comparison of different NaGdF4:Eu3+ synthesis routes and their influence on its structural and luminescent properties[J]. J. Phys. Chem. Solids, 2005, 66(6):1008-1019.
ZENG J H, SU J, LI Z H, et al.. Synthesis and upconversion luminescence of hexagonal-Phase NaYF4:Yb3+, Er3+ phosphors of controlled size and morphology[J]. Adv. Mater., 2005, 17(17):2119-2123.
KRAMER K W, BINER D, FREI G, et al.. Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors[J]. Chem. Mater., 2004, 16(7):1244-1251.
WEI Y, LU F, ZHANG X, et al.. Synthesis of oil-dispersible hexagonal-phase and hexagonal-shaped NaYF4:Yb, Er nanoplates[J]. Chem. Mater., 2006, 18(24):5733-5737.
LI Z, ZHANG Y. An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF4:Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence[J]. Nanotechnology, 2008, 19(34):345606.
SHI F, WANG J, ZHAI X, et al.. Facile synthesis of -NaLuF4:Yb/Tm hexagonal nanoplates with intense ultraviolet upconversion luminescence[J]. CrystEngComm, 2011, 13(11):3782-3787.
ZENG S, XIAO J, YANG Q, et al.. Bi-functional NaLuF4:Gd3+/Yb3+/Tm3+ nanocrystals:structure controlled synthesis, near-infrared upconversion emission and tunable magnetic properties[J]. J. Mater. Chem., 2012, 22(19):9870-9874.
GARGAS D J, CHAN E M, OSTROWSKI A D, et al.. Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging[J]. Nat. Nanotechnol., 2014, 9(4):300-305.
MAI H X, ZHANG Y W, SI R, et al.. High-quality sodium rare-earth fluoride nanocrystals:controlled synthesis and optical properties[J]. J. Am. Chem. Soc., 2006, 128(19):6426-6436.
YI G S, CHOW G M. Synthesis of hexagonal-phase NaYF4:Yb, Er and NaYF4:Yb, Tm nanocrystals with efficient up-conversion fluorescence[J]. Adv. Funct. Mater., 2006, 16(18):2324-2329.
LIU C, WANG H, ZHANG X, et al.. Morphology-and phase-controlled synthesis of monodisperse lanthanide-doped NaGdF4 nanocrystals with multicolor photoluminescence[J]. J. Mater. Chem., 2009, 19(4):489-496.
LIAN H, DAI Y, YANG D, et al.. Morphology control, luminescence and energy transfer properties of NaCeF4 and NaCeF4:Tb3+/Yb3+ nanocrystals[J]. Nanoscale, 2014, 6(16):9703-9712.
NADUVILEDATHU R A, RINKEL T, HAASE M. Ostwald ripening, particle size focusing, and decomposition of sub-10 nm NaREF4 (RE=La, Ce, Pr, Nd) nanocrystals[J]. Chem. Mater., 2014, 26(19):5689-5694.
CHEN G, OHULCHANSKYY T Y, KUMAR R, et al.. Ultrasmall monodisperse NaYF4:Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence[J]. ACS Nano, 2010, 4(6):3163-3168.
NYK M, KUMAR R, OHULCHANSKYY T Y, et al.. High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors[J]. Nano Lett., 2008, 8(11):3834-3838.