Gases can provide many interesting features as media for laser based application. However
the experiments in free space are intrinsically awkward because of the unavoidable diffraction and self-focusing effects at high laser power
which can lead the light to spread out and its intensity to fall as it propagates. We demonstrate a new type of porous core photonic crystal fiber for confining and guiding light in low-refractive-index and subwavelength air holes in the core. The broadband
single mode and low loss guiding properties of the fibers are studied. The propagation mechanism in low-refractive-index and subwavelength-diameter holes is analyzed by electromagnetic theory of optical waveguide transmission and evanescent wave coupling. Tightly confined light in holes
combined with long interaction lengths
provides new conditions for the interaction between light and matter
and enable a variety of applications including gas sensing
nonlinear light management
highly integrated photonics technology
atomic manipulation
etc
. Because the holes of core can guide light
the mode field distribution is affected directly by changing the size of the air holes
and the high birefringence property can be obtained. By careful designing of structure parameters of the fibers
high birefringence of
B
=410
-2
high birefringence in 5 m-diameter core
characteristics of large-mode-area
single-polarization and single-mode are obtained. These fibers have wide application prospect in fiber polarizer
filter
optical switch and fiber sensing fields. New methods are provided for the light field regulation.
关键词
Keywords
references
BYKOVD S, SCHMIDT O A, EUSER T G, et al.. Flying particle sensors in hollow-core photonic crystal fibre[J]. Nat. Photon., 2015, 9(7):461-465.
冯序, 杨晓占, 黄国家, 等. 基于铜离子沉积石墨烯涂层锥形光子晶体光纤的硫化氢传感器[J]. 光子学报, 2017, 46(9):0923002. FENG X, YANG X Z, HUANG G J, et al.. Hydrogen sulfide gas sensor based on cuion-deposited graphene-coated tapered photonic crystal fiber[J]. Acta Photon. Sinica, 2017, 46(9):0923002. (in Chinese)
MAK K F, TRAVERS J C, HOLZER P, et al.. Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF[J]. Opt. Express, 2013, 21(9):10942-10953.
刘兆伦, 安静, 韩颖, 等. 液晶填充碲酸盐光子晶体光纤偏振旋转器[J]. 光子学报, 2016, 45(11):1106003. LIU Z L, AN J, HAN Y, et al.. Liquid crystal infiltrated tellurite photonic crystal fiber polarization rotator[J]. Acta Photon. Sinica, 2016, 45(11):1106003. (in Chinese)
SPRAGUE M R, MICHELBERGER P S, CHAMPION T F M, et al.. Broadband single-photon-level memory in a hollow-core photonic crystal fibre[J]. Nat. Photon., 2014, 8(4):287-291.
RUSSELL P S J, HOLZER P, CHANG W, et al.. Hollow-core photonic crystal fibres for gas-based nonlinear optics[J]. Nat. Photon., 2014, 8(4):278-286.
施伟华, 尤承杰. 基于定向耦合的光子晶体光纤高灵敏度磁场和温度传感器[J]. 光学学报, 2016, 36(7):0706004. SHI W H, YOU C J. High sensitivity magnetic field and temperature sensor of photonic crystal fiber based on directional coupling[J]. Acta Opt. Sinica, 2016, 36(7):0706004. (in Chinese)
SAITOH K, KOSHIBA M. Confinement losses in air-guiding photonic bandgap fibers[J]. IEEE Photon. Technol. Lett., 2003, 15(2):236-238.
MONTZ Z, ISHAAYA A A. Dual-bandgap hollow-core photonic crystal fibers for third harmonic generation[J]. Opt. Lett., 2015, 40(1):56-59.
COUNY F, BENABID F, LIGHT P S. Large-pitch kagome-structured hollow-core photonic crystal fiber[J]. Opt. Lett., 2006, 31(24):3574-3576.
ALMEIDA V R, XU Q, BARRIOS C A, et al.. Guiding and confining light in void nanostructure[J]. Opt. Lett., 2004, 29(11):1209-1211.
HAYRINEN M, ROUSSEY M, SAYNATJOKI A, et al.. Titanium dioxide slot waveguides for visible wavelengths[J]. Appl. Opt., 2015, 54(10):2653-2657.
MARTINEZ A, BLACO J, SANCHIS P, et al.. Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths[J]. Nano Lett., 2010, 10(4):1506-1511.
BAEHR-JONES T, HOCHBERG M, WALKER C, et al.. High-Q optical resonators in silicon-on-insulator-based slot waveguides[J]. Appl. Phys. Lett., 2005, 86(8):081101.
FOSTER M A, MOLL K D, GAETA A L. Optimal waveguide dimensions for nonlinear interactions[J]. Opt. Express, 2004, 12(13):2880-2887.
ZHELTIKOV A M. The physical limit for the waveguide enhancement of nonlinear-optical processes[J]. Opt. Spectrosc., 2003, 95(3):410-415.
MONRO T. Optical fibres:beyond the diffraction limit[J]. Nat. Photon., 2007, 1(2):89-90.
WIEDERHECKER G S, CORDEIRO C M B, COUNY F, et al.. Field enhancement within an optical fibre with a subwavelength air core[J]. Nat. Photon., 2007, 1(2):115-118.
RUAN Y, EBENDORFF H H, AFSHAR S, et al.. Light confinement within nanoholes in nanostructured optical fibers[J]. Opt. Express, 2010, 18(25):26018-26026.
李绪友, 许振龙, 杨汉瑞, 等. 保偏空芯带隙光子晶体光纤温度特性研究[J]. 中国激光, 2016, 43(4):0405003. LI X Y, XU Z L, YANG H R, et al.. Analysis of thermal properties in a polarization-maintaining air-core photonic bandgap fiber[J]. Chin. J. Lasers, 2016, 43(4):0405003. (in Chinese)
ZHAO X T, ZHENG Y, LIU X X, et al.. Modal cutoff in rare-earth-doped photonic crystal fibers with multi-layer air-holes missing in the core[J]. Optoelectron. Lett., 2013, 9(3):201-203.
KIBLER B, AMRANI F, MORIN P, et al.. Cross-phase-modulation-instability band gap in a birefringence-engineered photonic-crystal fiber[J]. Phys. Rev. A, 2016, 93(1):013857.
WANGH L, YANG A J, LENG Y X. Broadband tunable optical amplification based on modulation instability characteristic of high-birefringence photonic crystal fibers[J]. Chin. Phys. B, 2013, 22(7):074208.
郭士亮, 黄摇惠, 沙晓鹏, 等. 八边形晶格双芯光子晶体光纤偏振分束器[J]. 发光学报, 2014, 35(7):878-882. GUO S L, HUANG Y H, SHA X P, et al.. Polarization splitter based on octagonal dual-core photonic crystal fibers[J]. Chin. J. Lumin., 2014, 35(7):878-882. (in Chinese)
JU J, JIN W, DEMOKAN M S. Design of single-polarization single-mode photonic crystal fiber at 1.30 and 1.55m[J]. J. Lightwave Technol., 2006, 24(2):825.
WANG X, LI S, LIU Q, et al.. Design of a single-polarization single-mode photonic crystal fiber filter based on surface plasmon resonance[J]. Plasmonics, 2017, 12(5):1-6.
KUMAR A, SAINI T S, NAIK K D, et al.. Large-mode-area single-polarization single-mode photonic crystal fiber:design and analysis[J]. Appl. Opt., 2016, 55(19):4995-5000.