用分子束外延技术将高灵敏度的InAs/AlSb量子阱结构的Hall器件赝配生长在GaAs衬底上。设计了由双掺杂构成的Hall器件的新结构,有效地提高了器件的面电子浓度。与传统的没有掺杂的InAs/AlSb量子阱结构的Hall器件相比,室温下器件电子迁移率从15 000 cm
2
V
-1
s
-1
提高到16 000 cm
2
V
-1
s
-1
。AFM测试表明材料有好的表面形态和结晶质量。从77 K 到300 K对Hall器件进行霍尔测试,结果显示器件不同温度范围有不同散射机构。双掺杂结构形成高灵敏度、高二维电子气(2DEG)浓度的InAs/AlSb异质结Hall器件具有广阔的应用前景。
Abstract
The highly sensitive Hall device made of InAs/AlSb quantum-well structures pseudomorphically grown on the GaAs substrate by molecular beam epitaxy has been developed. The advanced InAs/AlSb Hall device includes double -doped layers
which significantly elevate the sheet electron density. Moreover
electron mobility is increased from 15 000 cm
2
V
-1
s
-1
to 16 000 cm
2
V
-1
s
-1
at room temperature
compared with that of an unintentionally doped AlSb/InAs Hall device. AFM measurement results show a smooth surface morphology and high crystalline quality of the samples. The quantum Hall device can be operated in the temperature ranging from 77 K to 300 K. Hall measurements show different scattering mechanism on electron mobility at temperature range. The advanced highly-sensitive InAs/AlSb heterostructure two-dimensional electron gases(2DEG) Hall device including double -doped layers is promising in near future.
关键词
Keywords
references
LI Y, XIONG P, MOLNR S, et al.. Hall magnetometry on a single iron nanoparticle[J]. Appl. Phys. Lett., 2002, 80(24):4644-4646.
DINGLE R, STORMER H L, GOSSARD A C, et al.. Electron mobilities in modulation-doped semiconductor heterojunction superlattices[J]. Appl. Phys. Lett., 1978, 33(7):665-667.
RIEDI S, REICH C, BERL M, et al.. Electron gas quality at various (110)-GaAs interfaces as benchmark for cleaved edge overgrowth[J]. J. Cryst. Growth, 2016, 455(1):37-42.
KUNETS V P, MAZUR Y I, SALAMO G J, et al.. Doped-channel micro-Hall devices:size and geometry effects[J]. J. Appl. Phys., 2005, 98(20):094503-1-5.
朱彦旭, 王岳华, 宋会会, 等. 基于GaN基HEMT结构的传感器件研究进展[J]. 发光学报, 2016, 37(12):1545-1553. ZHU Y X, WANG Y H, SONG H H, et al.. Progress of sensor elements based on Ga-N HEMT structure[J]. Chin. J. Lumin., 2016, 37(12):1545-1553. (in Chinese)
WU L F, ZHANG Y M, LV H L, et al.. Atomic-layer-deposited Al2O3 and HfO2 on InAlAs:a comparative study of interfacial and electrical characteristics[J]. Chin. Phys. B, 2016, 25(10):108101-1-5.
PIKULIN D I, HYART T. Interplay of exciton condensation and the quantum spin Hall effect in InAs/GaSb bilayers[J]. Phys. Rev. Lett., 2014, 112(24):176403-6.
YOKOYAMA T, TANAKA Y, INOUE J. Charge transport in two-dimensional electron gas/insulator/superconductor junctions with Rashba spin-orbit coupling[J]. Phys. Rev. B, 2006, 74(3):035318-035324.
WANG H M, ZENG Y P, FAN T W. Characteristics of InAs epilayers for Hall effect devices grown on GaAs substrates by MBE[J].J. Cryst. Growth, 1997, 179(12):658-660.
ZHANG Y, ZHANG Y W, WANG C Y, et al.. High sensitivity Hall devices with AlSb/InAs quantum well structures[J]. Chin. Phys. B, 2013, 22(5):057106-1-3.
CHANG S Z, CHANG T C, LEE S C. The growth of highly mismatched InxGa1-xAs (0.28 x 1) on GaAs by molecular-beam epitaxy[J].J. Appl. Phys, 1993, 73(10):4916-4926.
WANG J, XING J L, WEI X, et al.. Investigation of high hole mobility In0.41Ga0.59Sb/Al0.91Ga0.09Sb quantum well structures grown by molecular beam epitaxy[J]. Appl. Phys. Lett., 2014, 104(5):052111-1-5.
High Sensitivity Hall Devices with AlSb/InAs Quantum Well Structure
Growth and Photoluminescence Characteristics of InGaNAs/GaAs QW with High In Composition
Improvement of Properties of GaAs-based Dilute Nitrides by Beryllium Doping
Research Progresses on Infrared Superluminescent Diodes
Advances in Epitaxial Growth, Structural and Optical Properties of Antimonide-based Type-Ⅱ Superlattices
Related Author
LI Yong-feng
YANG Xiao-feng
SHAN Rui
ZHOU Hai-chun
HAO Rui-ting
OU Quan-hong
GUO Jie
HUO Da-yun
Related Institution
College of Physics and Electronic, Yunnan Normal University
Yunnan Key Laboratory for Opti-electronic Information Technology
Beijing National Laboratory of Condensed Matter, Institue of Physics, Chinese Academy of Sciences
Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University
School of Optoelectronics Information Science and Engineering, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University