LU Hui-dong, TIE Sheng-nian,. Multiple Exciton Generation in Si BC8 Quantum Dots Solar Cell[J]. Chinese Journal of Luminescence, 2018,39(5): 668-673 DOI: 10.3788/fgxb20183905.0668.
Multiple Exciton Generation in Si BC8 Quantum Dots Solar Cell
Multiple exciton generation(MEG) is a process whereby multiple electron-hole pairs or excitons are produced upon absorption of a single photon in semiconductor quantum dots(QDs). This effect represents a promising route to increase solar conversion efficiencies in single-junction photovoltaic cells. MEG in Si BC8 QDs is based on impact ionization and statistical Fermi. The power conversion efficiency for Si QDs solar cells was calculated under AM1.5G solar spectrum with the cell temperature at 300 K. For the incident wavelength of 280-580 nm
the power conversion efficiency can be improved by MEG effect for
d
>
5.0 nm Si QDs. For Si BC8 QDs with
d
=6.3-6.4 nm
the maximum energy conversion efficiency is 51.6%.
关键词
Keywords
references
SHOCKLEY W, QUEISSER H J. Detailed balance limit of efficiency of p-n junction solar cells[J]. J. Appl. Phys., 1961, 32(3):510-519.
SCHALLER R D, KLIMOV V I. High efficiency carrier multiplication in pbse nanocrystals:implications for solar energy conversion[J]. Phys. Rev. Lett., 2004,92(18):186601.
EHRLER B, MARK W B W, AKSHAY R, et al.. Singlet exciton fission-sensitized infrared quantum dot solar cells[J]. Nano Lett., 2012, 12(2):1053-1057.
BEARD M C, KNUTSEN K P, YU P R, et al.. Multiple exciton generation in colloidal silicon nanocrystals[J]. Nano Lett., 2007, 7(8):2506-2512.
BEARD M C, JOHNSON J C, LUTHER J M, et al.. Multiple exciton generation in quantum dots versus singlet fission in molecular chromophores for solar photon[J]. Phil. Trans. R. Soc. A, 2015, 373(2044):1-11.
TIMMERMAN D, VALENTA J, DOHNALOVA K, et al.. Step-like enhancement of luminescence quantum yield of silicon nanocrystals[J]. Nat. Nanotechnol., 2011, 6:710-713.
SU W A, SHEN W Z. A statistical exploration of multiple exciton generation in silicon quantum dots and optoelectronic application[J]. Appl. Phys. Lett., 2012, 100(7):0711111.
GE D B, DOMNICH V, GOGOTSI Y. Thermal stability of metastable silicon phases produced by nanoindentation[J]. J. Appl. Phys., 2004, 95(5):2725-2731.
PARK S, CHO E, SONG D, et al.. n-type silicon quantum dots and p-type crystalline silicon heteroface solar cells[J]. Sol. Energy Mater. Sol. Cells, 2009, 93(6):684-690.
SEGALL M D, LINDAN P J D, PROBERT M J, et al.. First-principles simulation:ideas, illustrations and the CASTEP code[J]. J. Phys.:Condensed Matter, 2002, 14(8):2717-2744.
WIPPERMANN S, HE Y P, VRS M, et al.. Novel silicon phases and nanostructures for solar energy conversion[J]. Appl. Phys. Rev., 2016, 3(4):040807.
KIM T Y, PARK N M, KIM K H, et al.. Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films[J]. Appl. Phys. Lett., 2004, 85(22):5335.
BUURENV T, DINH L, CHASE L, et al.. Changes in the electronic properties of Si nanocrystals as a function of particle size[J]. Phys. Rev. Lett., 1998, 80(17):3803-3806.
ZHANG Q, BAYLISS S. The correlation of dimensionality with emitted wavelength and ordering of freshly produced porous silicon[J]. J. Appl. Phys., 1996, 79(3):1351-1356.
PROOT J P, DELERUE C, ALLAN G. Electronic structure and optical properties of silicon crystallites:application to porous silicon[J]. Appl. Phys. Lett., 1992, 61(16):1948-1950.
WANG L W, ZUNGER A. Electronic structure pseudopotential calculations of large (~1000 atoms) Si quantum dots[J]. J. Phys. Chem., 1994, 98(8):2158-2165.
WIPPERMANN S, VOROS M, ROCCA D. High-pressure core structures of si nanoparticles for solar energy conversion[J]. Phys. Rev. Lett., 2013, 110(4):046804.
BURS L E. Electron-electron and electron-hole interactions in small semiconductor crystallites:the size dependence of the lowest excited electronic state[J]. J. Chem. Phys., 1984, 80(7):4403-1-7.
KAYANUMA Y. Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape[J]. Phys. Rev. B, 1988, 38(15):9797-9805.
ELLINGSON R J, BEARD M C, JOHONSON J C, et al.. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots[J]. Nano Lett., 2005, 5(5):865-871.
NOZIK A J. Multiple exciton generation in semiconductor quantum dots[J]. Chem. Phys. Lett., 2008, 547(1):3-11.
NOZIK A J, BEARD M C, LUTHER J M, et al.. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells[J]. Chem. Rev., 2010, 110(11):6873-6890.
SCHALLER R D, AGRANOVICH V M, KLIMOV V I. High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states[J]. Nat. Phys., 2005, 1(3):189-194.
FERMI E. High energy nuclear events[J]. Prog. Theor. Phys., 1950, 5(4):570-583.
OKSENGENDLER B L, TURAEVA N N, RASHIDOVA S S. Statistical theory of multiple exciton generation in quantum dot solar cells[J]. Appl. Solar Energy, 2009, 45(3):162-165.
QARONY W, JUI Y A, DAS G D, et al.. Optical analysis in CH3NH3PbI3 and CH3NH3PbI2CI based thin-film perovskite solar cell[J]. Am. J. Energy Res., 2015, 3(2):19-24.
ASTMG173-03. Standard tables for reference solar spectral irradiances direct normal and hemispherical on 37 tilted surface[EB/OL].[2017-08-10] . https://www.astm.org.
LENZE M R, UMBACH T E, LENTJES C, et al.. Determination of the optical constants of bulk heterojunction active layers from standard solar cell measurements[J]. Org. Electron., 2014, 15(12):3584-3589.
BRENNER K H. Aspects for calculating local absorption with the rigorous coupled-wave method[J]. Opt. Express, 2010, 18(10):10369-10376.
BERMEL P, LUO C Y, ZENG L R, et al.. Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals[J]. Opt. Express, 2007, 15(25):16986-17000.
CHHAJED S, SCHUBERT M F, KIM J K, et al.. Nanostructured multilayer graded-index antireflction coating for Si solar cells with broadband and omnidirectional characteristics[J]. Appl. Phy. Lett., 2008, 93(25):251108.
School of Material Science and Engineering, Hebei University of Technology
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University
Hubei Key Laboratory of Nutritional Quality and Safety of Agro Products, Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Science
College of Life Science, Yangtze University
Key Laboratory of New Display Materials and Devices, Ministry of Industry and Information Technology, School of Materials Science and Engineering, Nanjing University of Science and Technology