BI Lin, DI Xiao-qiang, ZHAO Jian-ping etc. Spectral Parameter Calculation of Ho<sup>3+</sup>, Tm<sup>3+</sup> Co-doped KYb(WO<sub>4</sub>)<sub>2</sub> Laser Crystal[J]. Chinese Journal of Luminescence, 2018,39(5): 615-620
BI Lin, DI Xiao-qiang, ZHAO Jian-ping etc. Spectral Parameter Calculation of Ho<sup>3+</sup>, Tm<sup>3+</sup> Co-doped KYb(WO<sub>4</sub>)<sub>2</sub> Laser Crystal[J]. Chinese Journal of Luminescence, 2018,39(5): 615-620 DOI: 10.3788/fgxb20183905.0615.
Spectral Parameter Calculation of Ho3+, Tm3+ Co-doped KYb(WO4)2 Laser Crystal
laser crystal was grown by the top seeded solution growth (TSSG) method. The absorption and fluorescent spectra of the crystal were measured
and the spectral parameters were calculated
too. The experimental results show that there is a broader absorption band at the range of 890-1 000 nm with a full width at half maximum (FWHM) of 90 nm. The absorption cross section of main emission peak at 1 000 nm is 16.9210
-20
cm
2
. Meanwhile
Tm
3+
ions in the crystal have a wider absorption band at 1 690-1 812 nm with a FWHM of 118 nm. Therefore
the energy transfer of YbHo
YbTm
TmHo can be easily achieved. The spectral strength parameters of the crystal were calculated based on the Judd-Ofelt theory. According to the energy level diagram of Tm
3+
Ho
3+
and Yb
3+
ions
three kinds of energy transfer modes at 1 750-2 200 nm emission were discussed. The stimulated emission cross section of main emission peak at 2 030 nm is 3.4710
-20
cm
2
which indicates that the crystal can be used as an excellent laser gain medium at the range of 2 m.
关键词
Keywords
references
袁云松, 吴从越, 李雨芬, 等. 铥、镱共掺可见光响应型纳米TiO2光催化剂的制备及性能表征[J]. 发光学报, 2016, 37(11):1310-1315. YUAN Y S, WU C Y, LI Y F, et al.. Preparation and characterization of TiO2:Tm, Yb visible light responsive nano-photocatalyst[J]. Chin. J. Lumin., 2016, 37(11):1310-1315. (in Chinese)
孙超, 朱忠丽, 张莹. 低温燃烧法制备的Ho:YbGG多晶粉体及其发光性能[J].发光学报, 2014, 35(9):1065-1070. SUN C, ZHU Z L, ZHANG Y. Ho:YbGG polycrystal powder synthesized by low temperature combustion method and its luminescent characteristics[J]. Chin. J. Lumin., 2014, 35(9):1065-1070. (in Chinese)
付作岭, 董晓睿, 盛天琦, 等. 纳米晶体中稀土离子的发光性质及其变化机理研究[J]. 中国光学, 2015, 8(1):139-144. FU Z L, DONG X R, SHENG T Q, et al.. Luminescene properties and various mechanisms of rare earth ions in the nanocrystals[J]. Chin. Opt., 2015, 8(1):139-144. (in Chinese)
任国光, 黄裕年. 用激光红外干扰系统保护军用和民航机[J].激光与红外,2006, 36(1):1-6. REN G G, HUANG Y N. Laser-based IRCM system defenses for military and commercial aircraft[J]. Laser & Infrared, 2006, 36(1):1-6. (in Chinese)
VODOPYANOV K L, STAFSUDD R. Generation of Q-switched Er:YAG laser pulse evanescent wave absorption in ethanol[J]. Appl. Phys. Lett., 1998, 72:2211.
SRINIVASAN B, TAFOYA J, JAIN R K. High-power "watt-level" CW operation of diode-pumped 2.7m fiber laser using efficient cross-relaxation and energy transfer mechanisms[J]. Opt. Experess, 1999, 4:495.
REMSKI R, JAMES L T, GOOEN K H. Pulsed laser action in LiYF4:Er3+,Ho3+ at 77 K[J]. IEEE Quant. Electron., 1969, 5(4):214.
IMAI S, YAMADA T, FUJIMORI Y, et al.. A 20 W Cr3+, Tm3+, Ho3+:YAG laser[J]. Opt. Laser Technol., 1990, 22(5):351-353.
姚宝权, 董力强, 王月珠, 等. 激光二极管抽运Tm,Ho:YLF微片激光器的实验研究[J].光学学报,2004, 24(1):79-83. YAO B Q, DONG L Q, WANG Y Z, et al.. Experimental study of microchip (Tm, Ho):YLF laser pumped by laser diode[J]. Acta Opt. Sinica, 2004, 24(1):79-83. (in Chinese)
何晓敏, 张新陆, 王月珠, 等. 激光二极管泵浦室温Tm,Ho:YLF微片激光器的实验研究[J].激光与红外, 2005, 35(9):367-340. HE X M, ZHANG X L, WANG Y Z, et al.. Experimental study of laser-diode pumped room temperature Tm, Ho:YLF microchip laser[J]. Laser & Infrared, 2005, 35(9):367-340. (in Chinese)
张兴宝, 姚宝权, 王月珠, 等. 准四能级双掺Tm/Ho钒酸钆激光器[J].激光技术, 2006, 30(2):119-122. ZHANG X B, YAO B Q, WANG Y Z, et al.. Quasi-four-level co-doped Tm/Ho gadolinium vanadate laser[J]. Laser Technol., 2006, 30(2):119-122. (in Chinese)
BRENIER A. A new evaluation of Yb3+-doped crystals for laser applications[J]. J. Lumin., 2001, 92:199-201.
张莹, 刘景和, 李春, 等.高浓度铒离子掺杂钨酸镱钾激光晶体上转换发光研究[J]. 激光与红外工程,2012, 41(9):2322-2327. ZHANG Y, LIU J H, LI C, et al.. Up-conversion luminescence of highly Er3+-doped potassium ytterbium tungstate laser crystal[J]. Infrared Laser Eng., 2012, 41(9):2322-2327. (in Chinese)
KLOPP P, GRIEBNER U, PETROV V, et al.. Laser operation of the new stoichiometric crystal KYb(WO4)2[J]. Appl. Phys. B, 2002, 74:185-189.
MATEOS X, PUJOL M C, GVELL F, et al.. Sensitization of Er3+ emission at 1.5m by Yb3+ in KYb(WO4)2 single crystals[J]. Phys. Rev. B, 2002, 66:214104.
LOIKO P A, VILEJSHIKOVA E V, MATEOS X, et al.. Europium doping in monoclinic KYb(WO4)2 crystal[J]. J. Lumin., 2017, 183:217-225.
LOIKO P, MATEOS X, DUNINA E, et al.. Judd-Ofelt modelling and stimulated-emission cross-sections for Tb3+ ions in monoclinic KYb(WO4)2 crystal[J]. J. Lumin., 2017, 190:37-44.
王宇明, 张礼杰, 雷鸣, 等. 泡生法生长KYb(WO4)2晶体及其结构与光谱性能[J].中国激光, 2006, 33(5):697-700. WANG Y M, ZHANG L J, LEI M, et al.. Structure and spectra characteristics of KYb(WO4)2 crystal grown by Kyropoulos method[J]. Chin. J. Lasers, 2006, 33(5):697-700. (in Chinese)
SARDAR D K, RUSSELL CC, YOW R M, et al.. Spectroscopic analysis of the Er3+ (4f11) absorption intensities in NaBi(WO4)2[J]. Appl. Phys., 2004, 95(31):1180-1184.
JUDD B R. Optical absorption intensities of rare-earth ions[J]. Phys. Rev., 1962, 127:750.
OFELT G S. Intensities of crystal spectra of rare earth ions[J]. J. Chem. Phys., 1962, 37:511.
Spectral Parameter Computation of Yb∶GdScO3 Crystal
Luminescence Properties and Judd-Ofelt Analysis of BaGd2ZnO5:Sm3+ Microcrystalline Powders
Design of The Detection System of Multi Component Gas Composition in Dust Environment
Quantitative Investigation of α/β HMX Based on Terahertz Time Domain Spectroscopy System
Real-time Monitoring for The Concentrations of SO2 and H2S Mixed Gas by Ultraviolet Absorption Spectroscopy Detection Technique
Related Author
SUN Yu
LUO Jian-qiao
LIU Wen-peng
ZHANG De-ming
DING Shou-jun
DOU Ren-qin
WANG Xiao-fei
GAO Jin-yun
Related Institution
School of Science and Engineering of Mathematics and Physics, Anhui University of Technology, Maanshan
University of Science and Technology of China
Advanced Laser Technology Laboratory of Anhui Province
The Key Laboratory of Photonic Devices and Materials, Anhui Province, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences