ZHANG Ling-ling, ZHANG Min, SHI Jun-jie etc. First-principles Study of The Light-emitting Mechanism on (In,Al)GaN Alloys with Different Configurations[J]. Chinese Journal of Luminescence, 2018,39(4): 507-514
ZHANG Ling-ling, ZHANG Min, SHI Jun-jie etc. First-principles Study of The Light-emitting Mechanism on (In,Al)GaN Alloys with Different Configurations[J]. Chinese Journal of Luminescence, 2018,39(4): 507-514 DOI: 10.3788/fgxb20183904.0507.
First-principles Study of The Light-emitting Mechanism on (In,Al)GaN Alloys with Different Configurations
The electron structures and micromechanism of light emission on wurtzite (In
Al)GaN alloys with four configurations (uniform
short chain
small cluster and a combination of clusters and chains) were investigated based on first-principles density functional theory. The results show that the electrons of both short In-N-chain and small In-N clusters in InGaN alloy are localized at the valence band maximum (VBM) states. When the small cluster and the short chain coexist in the InGaN alloy
the former is much stronger than the latter in terms of the ability of electrons localization
and the small cluster is the radiative recombination luminescence center. However
in AlGaN alloy
the effect of the short Al-N-chain and the small Al-N clusters on the valence electrons localization at the VBM states is not remarkable. Microstructure difference of alloy can cause the change of the electronic localization
which affects the luminescence performance of the material
and the difference also has significant influence on the band gap and the bowing parameter.
关键词
Keywords
references
AMBACHER O. Growth and applications of Group Ⅲ-nitrides[J]. J. Phys. D:Appl. Phys., 1998, 31(20):2653-2710.
JAIN S C, WILLANDER M, NARAYAN J, et al.. Ⅲ-nitrides:growth, characterization, and properties[J]. J. Appl. Phys., 2000, 87(3):965-1006.
SIMON J, CAO Y, JENA D. Short-period AlN/GaN p-type superlattices:hole transport use in p-n junctions[J]. Phys. Stat. Sol., 2010, 7(10):2386-2389.
AKIYAMA T, AMMI D, NAKAMURA K, et al.. Surface reconstruction and magnesium incorporation on semipolar GaN(110) surfaces[J]. Phys. Rev. B, 2010, 81(24):245317.
DENBAARS S P, FEEZELL D, KELCHNER K, et al.. Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays[J]. Acta Mater., 2013, 61(3):945-951.
HURNI C A, DAVID A, CICH M J, et al.. Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation[J]. Appl. Phys. Lett., 2015, 106(3):031101.
AKASAKI I, AMANO H. Breakthroughs in improving crystal quality of GaN and invention of the p-n junction blue-light-emitting diode[J]. Jpn. J. Appl. Phys., 2006, 45(12R):9001.
CHICHIBU S F, UEDONO A, ONUMA T, et al.. Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors[J]. Nat. Mater., 2006, 5(10):810-1-6.
KANETA A, FUNATO M, KAWAKAMI Y. Nanoscopic recombination processes in InGaN/GaN quantum wells emitting violet, blue, and green spectra[J]. Phys. Rev. B, 2008, 78(12):125317.
ZHANG J P, WU S, RAI S, et al.. AlGaN multiple-quantum-well-based, deep ultraviolet light-emitting diodes with significantly reduced long-wave emission[J]. Appl. Phys. Lett., 2003, 83(17):3456-3458.
COLLINS C J, SAMPATH A V, GARRETT G A, et al.. Enhanced room-temperature luminescence efficiency through carrier localization in AlxGa1-xN alloy[J]. Appl. Phys. Lett., 2005, 86(3):031916.
朱有章, 陈光德, 谢伦军, 等. MOCVD生长的InGaN合金的发光特[J]. 发光学报, 2005, 26(5):602-606. ZHU Y Z, CHEN G D, XIE L J, et al.. Optical properties of InGaN film grown by MOCVD[J]. Chin. J. Lumin., 2005, 26(5):602-606. (in Chinese)
李忠辉, 杨志坚, 于彤军, 等. MOCVD生长InGaN/GaN MQW紫光LED[J]. 发光学报, 2003, 24(1):107-109. LI Z H, YANG Z J, YU T J, et al.. InGaN/GaN violet-LED grown by LP-MOCVD[J]. Chin. J. Lumin., 2003, 24(1):107-109. (in Chinese)
CHICHIBU S, WADA K, NAKAMURA S. Spatially resolved cathodoluminescence spectra of InGaN quantum wells[J]. Appl. Phys. Lett., 1997, 71(26):2346-2348.
HUMPHREYS C J. Does In form In-rich clusters in InGaN quantum wells?[J]. Philos. Mag., 2007, 87(13):1971-1982.
KENT P R C, ZUNGER A. Carrier localization and the origin of luminescence in cubic InGaN alloys[J]. Appl. Phys. Lett., 2001, 79(13):1977-1979.
KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev. B, 1999, 59(3):1758.
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996, 77(18):3865-3868.
MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Phy. Rev. B, 1976, 13(12):5188-5192.
CUI X Y, DELLEY B, STAMPFL C. Band gap engineering of wurtzite and zinc-blende GaN/AlN superlattices from first principles[J]. J. Appl. Phys., 2010, 108(10):103701.
ZORODDU A, BERNARDINI F, RUGGERONE P, et al.. First-principles prediction of structure, energetics, formation enthalpy, elastic constants, polarization, and piezoelectric constants of AlN, GaN, and InN:comparison of local and gradient-corrected density-functional theory[J]. Phys. Rev. B, 2001, 64(4):045208.
KIM K, LAMBRECHT W R L, SEGALL B. Elastic constants and related properties of tetrahedrally bonded BN, AlN, GaN, and InN[J]. Phys. Rev. B, 1996, 53(24):16310.
STAMPFL C, VAN DE WALLE C G. Density-functional calculations for Ⅲ-Ⅴ nitrides using the local-density approximation and the generalized gradient approximation[J]. Phys. Rev. B, 1999, 59(8):5521.
LITIMEIN F, BOUHAFS B, NOUET G, et al.. Meta-GGA calculation of the electronic structure of group Ⅲ-Ⅴ nitrides[J]. Phys. Stat. Sol.(b), 2006, 243(7):1577-1582.
PASZKOWICZ W, ADAMCZYK J, KRUKOWSKI S, et al.. Lattice parameters, density and thermal expansion of InN microcrystals grown by the reaction of nitrogen plasma with liquid indium[J]. Philos. Mag. A, 1999, 79(5):1145-1154.
MOSES P G, MIAO M, YAN Q, et al.. Hybrid functional investigations of band gaps and band alignments for AlN, GaN, InN, and InGaN[J]. J. Chem. Phys., 2011, 134(8):084703.
BUTCHER K S A, TANSLEY T L. InN, latest development and a review of the band-gap controversy[J]. Superlatt. Microstruct., 2005, 38(1):1-37.
OLIVER R A, BENNETT S E, ZHU T, et al.. Microstructural origins of localization in InGaN quantum wells[J]. J. Phys. D:Appl. Phys., 2010, 43(35):354003.
VAN DE WALLE C G, LYONS J L, JANOTTI A. Controlling the conductivity of InN[J]. Phys. Stat. Sol.(a), 2010, 207(5):1024-1036.
LAAKSONEN K, GANCHENKOVA M G, NIEMINEN R M. Vacancies in wurtzite GaN and AlN[J]. J. Phys:Cond. Matt., 2008, 21(1):015803.