QIAO Jing, XIE Sheng, MAO Lu-hong etc. Optimum Design of Silicon-based Metal-semiconductor-metal Photodetector with Subwavelength Metal Grating[J]. Chinese Journal of Luminescence, 2018,39(3): 363-368
QIAO Jing, XIE Sheng, MAO Lu-hong etc. Optimum Design of Silicon-based Metal-semiconductor-metal Photodetector with Subwavelength Metal Grating[J]. Chinese Journal of Luminescence, 2018,39(3): 363-368 DOI: 10.3788/fgxb20183903.0363.
Optimum Design of Silicon-based Metal-semiconductor-metal Photodetector with Subwavelength Metal Grating
To meet the requirement of high responsivity of silicon-based photodetector in visible light communication (VLC)
a novel silicon-based metal-semiconductor-metal photodetector utilizing the abnormal optical transmission of subwavelength metal grating was proposed. The effects of grating height
grating period and slit width on the absorptive performance of the photodetector were analyzed in detail by using the method of finite difference time domain. The simulation results indicate that the absorption enhancement was improved by the Fabry-Perot resonance and the surface plasmon polariton. For the VLC system with a wavelength of 615 nm
the optimum period
the optimum height and the optimum slit width of the metal grating are 580
91
360 nm
respectively. The absorption efficiency of the designed detector was 32% higher than that of the detector without metal grating. Since the proposed photodetector is based on standard CMOS process
it has potential application in the visible light communication.
关键词
Keywords
references
关伟鹏, 文尚胜, 黄伟明, 等. 基于神经网络的可见光通信接收系统的研究[J]. 中国激光, 2015, 42(11):113-120. GUAN W P, WEN S S, HUANG W M, et al.. Research on visible optical communication receiving system based on neural network[J]. Chin. J. Laser, 2015, 42(11):113-120. (in Chinese)
TIWARI S V, SEWAIWAR A, CHUNGY H. Smart home multi-device bidirectional visible light communication[J]. Photon. Network Commun., 2017, 33(1):52-59.
FANG J, YANG Z, LONG S, et al.. High speed indoor navigation system based on visible light and mobile phone[J]. IEEE Photon. J., 2017, 9(2):8200711-1-11.
UEMA H, MATSUMURAL T, SAITO S, et al.. Research and development on underwater visible light communication systems[J]. Electron. Commun. Jpn., 2015, 98(3):9-13.
HUANG J M, WANG C C, CHIU Y J. A CMOS opto-electronic single chip using the hybrid scheme for optical receivers[J]. Microwave Opt. Technol. Lett., 2008, 50(9):2430-2434.
AHMAD W, TORMANEN M, SJOLAND H. Photodiodes in deep submicron CMOS process for fully integrated optical receivers[C]. IEEE European Solid-State Device Research Conference, 2013:135-138.
BRANDL P, ENMER P, JUKI T, et al.. OWC using a fully integrated optical receiver with large-diameter APD[J]. IEEE Photon. Technol. Lett., 2015, 27(5):482-485.
ZUMUUKHOROL M, KHURELBAATAR Z, YUK S H, et al.. Effects of finger dimension on low-frequency noise and optoelectronic properties of Ge metal-semiconductor-metal photodetectors with interdigitated Pt finger electrodes[J]. Microelectron. Reliab., 2017, 69:60-65.
江孝伟, 武华. 一维增透亚波长光栅的研究[J]. 发光学报, 2017, 38(2):177-181. JIANG X W, WU H. Study on one-dimensional enhancement of subwavelength gratings[J]. Chin. J. Lumin., 2017, 38(2):177-181. (in Chinese)
郝宇, 孙晓红, 孙燚, 等. 基于光栅结构的砷化镓高效率吸收层设计[J]. 发光学报, 2013, 34(6):769-775. HAO Y, SUN X H, SUN Y, et al.. Design of gallium arsenide high efficiency absorptive layer based on grating structure[J]. Chin. J. Lumin., 2013, 34(6):769-775. (in Chinese)
SEIFOURI M, SHARAF R. Symmetric metal nanogratings and horned shape extended pads to enhance light transmission of plasmonic metal-semiconductor-metal photodetector[J]. Opt. Quant. Electron., 2017, 49(4):136.
CHENG Y, IKKU Y, TAKENAKA M, et al.. Low-dark-current waveguide InGaAs metal-semiconductor-metal photodetector monolithically integrated with InP grating coupler on Ⅲ-Ⅴ CMOS photonics platform[J]. Jpn. J. Appl. Phys., 2016, 55(4S):04EH01-1-4.
MASOULEH F, DAS N, ROZATI S M. Optimal subwavelength design for efficient light trapping in central slit of plasmonics-based metal-semiconductor-metal photodetector[J]. Opt. Quant. Electron., 2015, 47(6):1477-1485.
KARAR A, TAN C L, ALAMEH K, et al.. Metal nano-grating optimization for higher responsivity plasmonic-based GaAs metal-semiconductor-metal photodetector[J]. J. Lightwave Technol., 2013, 31(7):1088-1092.
PALIK E D. Handbook of Optical Constants of Solids[M]. New York:Academic Press, 1985.
PORTO J A, GARCIA-VIDAL F J, PENDRY J B. Transmission resonances on metallic gratings with very narrow slits[J]. Phys. Rev. Lett., 1999, 83(14):2845-2848.
张平, 董亮, 张雅鑫, 等. 亚波长金属光栅的衍射辐射特性研究[J]. 光子学报, 2013, 42(5):537-542. ZHANG P, DONG L, ZHANG Y X, et al.. Diffraction radiation of subwavelength metallic grating[J]. Acta Photon. Sinica, 2013, 42(5):537-542. (in Chinese)
BAMES W L, DEREUX A, EBBESEN T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950):824-830.
RAHMAN A T, MAJEWSKI P, VASILEV K. Extraordinary optical transmission:coupling of the Wood-Rayleigh anomaly and the Fabry-Perot resonance[J]. Opt. Lett., 2012, 37(10):1742-1744.
Deep UV Detection: from Single-crystalline MgZnO to Amorphous Ga2O3
Photodetector with Broadband-narrowband Dual-function Detection Mode
Microcavity Effect on Modulation Bandwidth Characteristics in Organic Light-emitting Diodes
Response Wavelength Characterization of Ag-doped Chalcogenide Glass Photodetectors
Optimization Methods for UAVs to Search Light Source in VLC
Related Author
LIANG Huili
ZHU Rui
DU Xiaolong
MEI Zengxia
JIANG Yan
GAO Feng
LI Lin
LI Bin
Related Institution
Institute of Physics, Chinese Academy of Sciences
Songshan Lake Materials Laboratory
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University
State Key Laboratory of Integrated Optoelectronics, Jilin University Region, College of Electronic Science and Engineering, Jilin University
Physics Department, Harbin Institute of Technology