LI Jing-yu, LIN Qing, ZHANG Ting etc. Bistable Memory Devices Based on Fullerenes Derivative Doped Resistive Memory Properties[J]. Chinese Journal of Luminescence, 2018,39(3): 356-362
LI Jing-yu, LIN Qing, ZHANG Ting etc. Bistable Memory Devices Based on Fullerenes Derivative Doped Resistive Memory Properties[J]. Chinese Journal of Luminescence, 2018,39(3): 356-362 DOI: 10.3788/fgxb20183903.0356.
Bistable Memory Devices Based on Fullerenes Derivative Doped Resistive Memory Properties
The memory devices based on composites of PS and PC
61
BM were investigated. By adjusting the buffer layer materials
we optimized the ON/OFF current radio of the device. With Au-NPs
PEDOT:PSS
PVP as a buffer layer at the context layer of the active layer respectively
the adjustable ON/OFF current radio
different memory mechanism of electrical bistable device is obtained. The measurement results show that the buffer layer conductivity plays an important role in ON/OFF current radio. When the buffer layer material changed PVP to Au-NPs
the ON/OFF current radio increased gradually from 10
2
to 10
5
. In addition to the memory mechanism of different structure
through the
I-V
fitting curve and energy band diagram analysis
it is found that the conductive properties and energy level of buffer material are important factors of affecting the memory mechanism.
关键词
Keywords
references
LIN W P, LIU S J, GONG T, et al.. Polymer-based resistive memory materials and devices[J]. Adv. Mater., 2014, 26(4):570-606.
MA Z, OOI P C, LI F, et al.. Electrical bistabilities and conduction mechanisms of nonvolatile memories based on a polymethylsilsesquioxane insulating layer containing CdSe/ZnS quantum dots[J]. J. Electron. Mater., 2015, 44(10):3962-3966.
DONG Y Y, PARK H M, KIM S W, et al.. Enhancement of memory margins for stable organic bistable devices based on graphene-oxide layers due to embedded CuInS2 quantum dots[J]. Carbon, 2014, 75(75):244-248.
LAI Q, ZHU Z, CHEN Y, et al.. Organic nonvolatile memory by dopant-configurable polymer[J]. Appl. Phys. Lett., 2006, 88(13):391.
KORNER P O, SHALLCROSS R C, MAIBACH E, et al.. Optical and electrical multilevel storage in organic memory passive matrix arrays[J]. Org. Electron., 2014, 15(15):3688-3693.
KIM T W, YANG Y, LI F, et al.. Electrical memory devices based on inorganic/organic nanocomposites[J]. NPG Asia Mater., 2012, 4(6):e18.
石胜伟, 彭俊彪. 有机电双稳态器件[J]. 化学进展, 2007, 19(9):1371-1380. SHI D H, PENG J B. Organic electrical bistable devices[J]. Prog. Chem., 2007, 19(9):1371-1380. (in Chinese)
ZHANG B, CHEN Y, NEOH K G, et al.. Organic electronic memory devices[J]. Elect. Memory Mater. Dev., 2015:1-53.
HU B, FEI Z, ZHU X, et al.. Nonvolatile bistable resistive switching in a new polyimide bearing 9-phenyl-9H-carbazole pendant[J]. J. Mater. Chem., 2011, 22(2):520-526.
JANG J, SONG Y, YOO D, et al.. Energy consumption estimation of organic nonvolatile memory devices on a flexible plastic substrate[J]. Adv. Electron. Mater., 2016, 1(11):1500186.
LEE B H, BAE H, SEONG H, et al.. Direct observation of a carbon filament in water-resistant organic memory[J]. ACS Nano, 2015, 9(7):7306-13.
SONGY, LING Q D, LIM S L, et al.. Electrically bistable thin-film device based on PVK and GNPs polymer material[J]. IEEE Electron Dev. Lett., 2007, 28(2):107-110.
PRAKASH A, OUYANG J, LIN J L, et al.. Polymer memory device based on conjugated polymer and gold nanoparticles[J]. J. Appl. Phys., 2006, 100(5):539.
OUYANG J. Temperature-sensitive asymmetrical bipolar resistive switches of polymer:nanoparticle memory devices[J]. Org. Electron., 2014, 15(9):1913-1922.
OUYANG J. Electron transfer at the contact between Al electrode and gold nanoparticles of polymer:nanoparticle resistive switching devices studied by alternating current impedance spectroscopy[J]. Appl. Phys. Lett., 2013, 103(23):233508-1-4.
ZHANG X, XU J, ZHANG X, et al.. Electricalbistable properties of nonvolatile memory device based on hybrid ZCIS NCs:PMMA film[J]. Mater. Sci. Semicond. Proc., 2017, 57:105-109.
XIE L H, LINGQ D, HOU X Y, et al.. An effective friedel-crafts postfunctionalization of poly(n-vinylcarbazole) to tune carrier transportation of supramolecular organic semiconductors based on -stacked polymers for nonvolatile flash memory cell[J]. J. Am. Chem. Soc., 2008, 130(7):2120-2121.
COLLIER C P, MATTERSTEIG G, WONG E W, et al.. A
catenane-based solid state electronically reconfigurable switch[J]. Science, 2000, 289(5482):1172-1175.
SUN Y, LI L, WEN D, et al.. Bistable electrical switching and nonvolatile memory effect in mixed composite of oxadiazole acceptor and carbazole donor[J]. Org. Electron., 2015, 25:283-288.
ZHUANG X D, CHEN Y, LIU G, et al.. Conjugated-polymer-functionalized graphene oxide:synthesis and nonvolatile rewritable memory effect[J]. Adv. Mater., 2010, 22(15):1731-1735.
HA H, KIM O. Unipolar switching characteristics of nonvolatile memory devices based on poly(3,4-ethylenedioxythi-ophene):poly(styrene sulfonate) thin films[J]. Jpn. J. Appl. Phys., 2009, 48:031024.
AWAIS M N, CHOI K H. Resistive switching and current conduction mechanism in full organic resistive switch with the sandwiched structure of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/poly(4-vinylphenol)/poly(3,4-ethylenediox-ythiophene):poly(styrenesulfonate)[J]. Electron. Mater. Lett., 2014, 10(3):601-606.
MOLLER S, PERLOV C, JACKSON W, et al.. A polymer/semiconductor write-once read-many-times memory[J]. Nature, 2003, 426(6963):166.
LI X, LU Y, GUAN L, et al.. Effects of buffer layer and thermal annealing on the performance of hybrid Cu2S/PVK electrically bistable devices[J]. Solid-State Electron., 2016, 123:101-105.
LI X, TANG A, LI J, et al.. Heating-up synthesis of MoS2 nanosheets and their electrical bistability performance[J]. Nanoscale Res. Lett., 2016, 11(1):171.
LI J, TANG A, LI X, et al.. Negative differential resistance and carrier transport of electrically bistable devices based on poly(N-vinylcarbazole)-silver sulfide composites[J]. Nanoscale Res. Lett., 2014, 9(1):128.
CAO Y P, HU Y F, LI J T, et al.. Electrical bistable devices using composites of zinc sulfide nanoparticles and poly-(N-vinyl-carbazole)[J]. Chin. Phys. B, 2015, 24(3):298-301.
MICHALE J H, JULIA E W, ZHONG C J, et al.. Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm:core and monolayer properties as a function of core size[J]. Langmuir, 1998, 14(1):17-30.
WU C, LI F, GUO T, et al.. Controlling memory effects of three-layer structured hybrid bistable devices based on graphene sheets sandwiched between two laminated polymer layers[J]. Org. Electron., 2012, 13(1):178-183.
HE Y, ZHAO G, PENG B, et al.. High-yield synthesis and electrochemical and photovoltaic properties of indene-C70 bisadduct[J]. Adv. Funct. Mater., 2010, 20(19):3383-3389.
SUN Y M, LU J G, AI C P, et al.. Enhancement of memory margins in the polymer composite of [6,6] -phenyl-C61-butyric acid methyl ester and polystyrene[J]. Phys. Chem. Chem. Phys., 2016, 18(44):30808.
OUANG J. Materials effects on the electrode-sensitive bipolar resistive switches of polymer:gold nanoparticle memory devices[J]. Org. Electron., 2013, 14(6):1458-1466.
WANG J, GAO F, GREENHAM N C. Low-power write-once-read-many-times memory devices[J]. Appl. Phys. Lett., 2010, 97(5):164.
LIU J Q, ZENG Z Y, CAO X H, et al.. Preparation of MoS2-polyvinylpyrrolidone nanocomposites for flexible nonvolatile rewritable memory devices with reduced graphene oxide electrodes[J]. Small, 2012, 8(22):3517-3522.
ISLAM S M, BANERJI P, BANERJEE S. Electrical bistability, negative differential resistance and carrier transport in flexible organic memory device based on polymer bilayer structure[J]. Org. Electron., 2014, 15(1):144-149.
LI Y, NI X, DING S. High performance resistive switching memory organic films prepared through PPy growing on graphene oxide substrate[J]. J. Mater. Sci.:Mater. Electron., 2015, 26(11):9001-9009.
SON D I, PARK D H, CHOI W K, et al.. Carrier transport in flexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) polymer layer[J]. Nanotechnology, 2009, 20(19):195203.
Analyzing Excited State Dynamics of Organic and Perovskite Materials Using Magnetic-optical-electrical Comprehensive Methods: Achieving Interdisciplinary Research and Cross-disciplinary Collaboration
Long Persistence Luminescence: Shining Pearl of Life
Controlled Growth of Pure Cubic Mg0.3Zn0.7O Thin Films on c-plane Sapphire by Introducing Graded Buffer Layer
The Multicolor Electroluminescence Based on Europium-complex Microcavity
Fabrication and Growth Mechanism of ZnO Nanorods by Electrochemical Method
Related Author
HU Bin
ZHU Xixiang
Zheng WANG
Cheng-yi ZHU
Mei PAN
JIANG Ming-ming
ZHENG Jian
ZHANG Zhen-zhong
Related Institution
Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University
Department of Materials Science and Engineering, University of Tennessee
Lehn Institute of Functional Materials, School of Chemistry,Sun Yat-Sen University
State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences