LI Xue-chen, WU Kai-yue, ZHANG Qi etc. Optical Characteristics of Saw-tooth Voltage Excited Dielectric Barrier Discharge in Argon[J]. Chinese Journal of Luminescence, 2018,39(3): 349-355
LI Xue-chen, WU Kai-yue, ZHANG Qi etc. Optical Characteristics of Saw-tooth Voltage Excited Dielectric Barrier Discharge in Argon[J]. Chinese Journal of Luminescence, 2018,39(3): 349-355 DOI: 10.3788/fgxb20183903.0349.
Optical Characteristics of Saw-tooth Voltage Excited Dielectric Barrier Discharge in Argon
A micro-gap dielectric barrier discharge decive in a parallel plate geometry is excited by a saw-tooth voltage to produce a stepped discharge
whose current waveform presents a plateau every half voltage cycle. It is found that the duration and amplitude of the discharge plateau increase with the increasing of the peak value of the applied saw-tooth voltage. The temporal evolution in the discharge plateau is investigated through optical method. It is confirmed that the stepped discharge is in an atmospheric Townsend discharge regime. Scanning the optical emission spectrum from the discharge
it is found that the spectrum is composed of the second positive system of nitrogen molecule(C
3
u
B
3
u
)
OH(A
2
+
X
2
) and Ar Ⅰ. With the increasing of the peak value of the applied saw-tooth voltage
it increases for the spectral intensity of OH (308.8 nm) and the molecular vibrational temperature
while the excited electron temperature decreases. By comparing the spectral line intensity of Ar Ⅰ(750.4 nm)
it is found that the spectral line intensity produced by saw-tooth wave excited dielectric barrier discharge is larger than that of sine wave excited dielectric barrier discharge under the same peak voltage. All of these physical phenomena mentioned above are analyzed qualitatively by gas discharge mechanism.
关键词
Keywords
references
GEYTER N D, MORENT R, GENGEMBRE L, et al.. Increasing the hydrophobicity of a PP film using a helium/CF4, DBD treatment at atmospheric pressure[J]. Plasma Chem. Plasma Proc., 2008, 28(2):289-298.
REHMAN F, LIU Y, ZIMMERMAN W B J. The role of chemical kinetics in using O3, generation as proxy for hydrogen production from water vapour plasmolysis[J]. Int. J. Hydrogen Energy, 2016, 41(15):6180-6192.
PLAKSIN V Y, PENKOV O V, MIN K K, et al.. Exhaust cleaning with dielectric barrier discharge[J]. Plasma Sci. Technol., 2010, 12(12):688.
DENG X T, SHI J J, SHAMA G, et al.. Effects of microbial loading and sporulation temperature on atmospheric plasma inactivation of Bacillus subtilis spores[J]. Appl. Phys. Lett., 2005, 87(15):153901-1-3.
CHU H Y, HUANG B S. Gap-dependent transitions of atmospheric microplasma in open air[J]. Phys. Plasmas, 2011, 18(4):043501.
KANAZAWA S, KOGOMA M, MORIWAKI T, et al.. Stable glow plasma at atmospheric pressure[J]. J. Phys. D:Appl. Phys., 1988, 838:189-200.
MASSINES F, GHERARDI N, NAUD N, et al.. Recent advances in the understanding of homogeneous dielectric barrier discharges[J]. Eur. Phys. J. Appl. Phys., 2009, 47(2):22805.
MASSINES F, RABEHI A, DECOMPS P, et al.. Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier[J]. J. Appl. Phys., 1998, 83(6):2950-2957.
GHERARDI N, GOUDA G, GAT E, et al.. Transition from glow silent discharge to micro-discharges in nitrogen gas[J]. Plasma Sources Sci. Technol., 2000, 9(3):340.
TRUNEC D, BRABLEC A, BUCHTA J. Atmospheric pressure glow discharge in neon[J]. J. Phys. D:Appl. Phys., 2001, 34(11):1697.
NAVRTIL Z, BRANDENBURG R, TRUNEC D, et al.. Comparative study of diffuse barrier discharges in neon and helium[J]. Plasma Sources Sci. Technol., 2005, 15(1):8.
BRANDENBURG R, NAVRTIL Z, JNSK J, et al.. The transition between different modes of barrier discharges at atmospheric pressure[J]. J. Phys. D:Appl. Phys., 2009, 42(8):085208.
KOZLOV K V, BRANDENBURG R, WAGNER H E, et al.. Investigation of the filamentary and diffuse mode of barrier discharges in N2/O2 mixtures at atmospheric pressure by cross-correlation spectroscopy[J]. J. Phys. D:Appl. Phys., 2005, 38(4):518-529.
OSAWA N, YOSHIOKA Y. Generation of low-frequency homogeneous dielectric barrier discharge at atmospheric pressure[J]. IEEE Trans. Plasma Sci., 2012, 40(1):2-8.
BOGACZYK M, SRETENOVI? G B, WAGNER H E. Influence of the applied voltage shape on the barrier discharge operation modes in helium[J]. Eur. Phys. J. D, 2013, 67(10):212.
SHAO T, ZHANG C, YU Y, et al.. Temporal evolution of nanosecond-pulse dielectric barrier discharges in open air[J]. Europhys. Lett., 2012, 97(5):504-514.
YU S, PEI X, HASNAIN Q, et al.. Study on the mode-transition of nanosecond-pulsed dielectric barrier discharge between uniform and filamentary by controlling pressures and pulse repetition frequencies[J]. Phys. Plasmas, 2016, 23(2):2.
ABDELAZIZ A A, SETO T, ABDEL-SALAM M, et al.. Influence of applied voltage waveforms on the performance of surface dielectric barrier discharge reactor for decomposition of naphthalene[J]. J. Phys. D:Appl. Phys., 2015, 48:195201.
LI X, NIU D, YIN Z, et al.. Numerical simulation of operation modes in atmospheric pressure uniform barrier discharge excited by a saw-tooth voltage[J]. Phys. Plasmas, 2012, 19(8):1819.
李雪辰, 楚婧娣, 鲍文婷, 等. 直流激励等离子体喷枪的发光特性研究[J]. 光学学报, 2015, 35(7):41-46. LI X C, CHU J D, BAO W T, et al.. Study on the discharge characteristics of a DC-voltage excited plasma jet[J]. Acta Opt. Sinica, 2015, 35(7):41-46. (in Chinese)
JIANG W M, LI J, TANG J, et al.. Prediction of nested complementary pattern in argon dielectric-barrier discharge at atmospheric pressure[J]. Sci. Rep., 2015, 5:16391.
SUBLET A, DING C, DORIER J. L et al.. Atmospheric and sub-atmospheric dielectric barrier discharges in helium and nitrogen[J]. Plasma Sources Sci. Technol., 2006, 15(4):627-634.
EWING D, DAMSKER K E. The use of glycerol to link DNA damage from hydroxyl radicals with the activities of DNA repair enzymes[J]. Biochem. Biophys. Res. Commun., 1995, 207:957.
TANG J, JIANG W M, ZHAO W, et al.. Development of a diffuse air-argon plasma source using a dielectric-barrier discharge at atmospheric pressure[J]. Appl. Phys. Lett., 2013, 102:033503.