YANG Jie, ZHU Shao-xin, YAN Jian-chang etc. Effect of Carrier Recombination Mechanism on Modulation Bandwidth of InGaN Multiple-quantum-wells Blue Light Emitting Diodes[J]. Chinese Journal of Luminescence, 2018,39(2): 202-207
YANG Jie, ZHU Shao-xin, YAN Jian-chang etc. Effect of Carrier Recombination Mechanism on Modulation Bandwidth of InGaN Multiple-quantum-wells Blue Light Emitting Diodes[J]. Chinese Journal of Luminescence, 2018,39(2): 202-207 DOI: 10.3788/fgxb20183902.0202.
Effect of Carrier Recombination Mechanism on Modulation Bandwidth of InGaN Multiple-quantum-wells Blue Light Emitting Diodes
The effect of carrier recombination mechanism on modulation bandwidth of InGaN MQWs LED was investigated with varying MQWs structures. LED with narrow well has a faster modulation speed because of high radiative recombination rate and carrier leakage. LED sample using InGaN barrier with 1% In content has a higher modulation bandwidth than LED with GaN barrier for the reason of higher radiative recombination rate. While in the case of 5% In content
carrier leakage dominates all the recombination mechanisms and crystal defect related SRH and Auger recombination are also severe. In addition
the rate of SRH and Auger recombination is very high
which leads to fast modulation speed.
关键词
Keywords
references
KOMINE T, NAKAGAWA M. Fundamental analysis for visible-light communication system using LED lights[J]. IEEE Trans. Consumer Electron., 2004, 50(1):100-107.
ELGALA H, MESLEH R, HAAS H. Indoor optical wireless communication:potential and state-of-the-art.[J]. IEEE Commun. Magazine, 2011, 49(9):56-62.
宋小庆, 赵梓旭, 陈克伟, 等. 可见光通信应用前景与发展挑战[J]. 激光与光电子学进展, 2015, 52(8):080004. SONG X Q, ZHAO Z X, CHEN K W, et al.. Visible light communication:potential applications and challenges[J]. Laser Optoelectron. Prog., 2015, 52(8):080004. (in Chinese)
ISO K, YAMADA H, HIRASAWA H, et al.. High brightness blue InGaN/GaN light emitting diode on nonpolar m-plane bulk GaN substrate[J]. Jpn. J. Appl. Phys., 2007, 46(36-40):L960-L962.
LIN C H, CHIA Y S, YANG K, et al.. Further reduction of efficiency droop effect by adding a lower-index dielectric interlayer in a surface plasmon coupled blue light-emitting diode with surface metal nanoparticles[J]. Appl. Phys. Lett., 2014, 105(10):101106.
ZHAO Y J, TANAKA S, PAN C C, et al.. High-power blue-violet semipolar (20(2)over-bar(1)over-bar) InGaN/GaN light-emitting diodes with low efficiency droop at 200 A/cm(2)[J]. Appl. Phys. Express, 2011, 4(8):082104.
GUO M, GUO Z Y, HUANG J, et al.. Improvement of the carrier distribution with GaN/InGaN/AlGaN/InGaN/GaN composition-graded barrier for InGaN-based blue light-emitting diode[J]. Chin. Phys. B, 2017, 26(2):028502.
LI H L, CHEN X B, GUO J Q, et al.. A 550 Mbit/s real-time visible light communication system based on phosphorescent white light LED for practical high-speed low-complexity application[J]. Opt. Express, 2014, 22(22):27203-27213.
LIU Y S, SMITH D A. frequency-response of an amplitude-modulated GaAs luminescence diode[J]. Proc. IEEE, 1975, 63(3):542-544.
IKEDA K, HORIUCHI S, TANAKA T, et al..design parameters of frequency-response of GaAs-(Ga,Al)as double heterostructure LEDs for optical communications[J]. IEEE Trans. Electron Dev., 1977, 24(7):1001-1005.
KIM M H, SCHUBERT M F, DAI Q, et al.. Origin of efficiency droop in GaN-based light-emitting diodes[J]. Appl. Phys. Lett., 2007, 91(18):183507.
LUCIA M L, HERNANDEZ-ROJAS J L, LEON C, et al.. Capacitance measurements of pn junctions:depletion layer and diffusion capacitance contributions[J]. Eur. J. Phys., 1993, 14:86-89.
CHO J, MAO A, KIM J K, et al.. Analysis of reverse tunnelling current in GaInN light-emitting diodes[J]. Electron. Lett., 2010, 46(2):156-157.
SAUL R H. Recent advances in the performance and reliability of InGaAsP LEDs for lightwave communication-systems[J]. IEEE Trans. Electron Dev., 1983, 30(4):285-295.
TIEN P L, DENTAI A G. Power and modulation bandwidth of GaAs-AlGaAs high-radiance LEDs for optical communication systems[J]. IEEE J. Quant. Electron., 1978, 14(3):150-159.
FRIESEN G, OSSENBRINK H A. Capacitance effects in high-efficiency cells[J]. Solar Energy Mater. Solar Cells, 1997, 48(1-4):77-83.
NEE T E, WANG J C, SHEN H T, et al.. Effect of multiquantum barriers on performance of InGaN/GaN multiple-quantum-well light-emitting diodes[J]. J. Appl. Phys., 2007, 102(3):033101-1-7.
LEE W, KIM M H, ZHU D, et al.. Growth and characteristics of GaInN/GaInN multiple quantum well light-emitting diodes[J]. J. Appl. Phys., 2010, 107(6):063102.
LIU J P, RYOU J H, DUPUIS R D, et al.. Barrier effect on hole transport and carrier distribution in InGaN/GaN multiple quantum well visible light-emitting diodes[J]. Appl. Phys. Lett., 2008, 93(2):021102.
LIN G B, MEYAARD D, CHO J, et al.. Analytic model for the efficiency droop in semiconductors with asymmetric carrier-transport properties based on drift-induced reduction of injection efficiency[J]. Appl. Phys. Lett., 2012, 100(16):161106.
XIE J Q, NI X F, FAN Q, et al.. On the efficiency droop in InGaN multiple quantum well blue light emitting diodes and its reduction with p-doped quantum well barriers[J]. Appl. Phys. Lett., 2008, 93(12):121107.