YOU Ting, WU Fei, DONG Wei. Design of A Novel Hybrid Surface Plasmonic Nanolaser[J]. Chinese Journal of Luminescence, 2018,39(2): 188-195 DOI: 10.3788/fgxb20183902.0188.
Design of A Novel Hybrid Surface Plasmonic Nanolaser
In order to optimize the performance of nanolasers
a nanolaser structure based on a nanowire/semicircle MgF
2
/triangle air slot and metal ridge was proposed. The models produce that the SPP mode and nanowire waveguides coupled in the dielectric layer of low refractive index can store light energy like a capacitor under low refractive index clearance. Low refractive index of the air tank field strength increased significantly. The electric field distribution
the modal properties
the quality factor and the lasing threshold are investigated by using the finite-element method on the basis of the COMSOL Multiphysics platform. Through the comprehensive analysis of each part of the line chart
the model performance data are obtained. Simulation results reveal that this kind of nano laser has a low propagation loss and high field confinement ability
its minimum normalized mode area is only 0.004 8
the minimum propagation loss is only 0.002. The waveguide mode field area and limiting factors show that the modeled laser can achieve sub-wavelength constraints of the output light field. It can achieve low gain threshold
low transmission loss and high quality factor requirements.
关键词
Keywords
references
WANG L, QU J, SONG J, et al.. A novel plasmonic nanolaser based on fano resonances with super low threshold[J]. Plasmonics, 2016:1-7.
ZHU J, XU Z, XU W, et al.. New surface plasmon polariton waveguide based on GaN nanowires[J]. Results in Physics, 2016, 7:381-384.
OULTON R F, SORGER V J, ZENTGRAF T, et al.. Plasmon lasers at deep subwavelength scale[J]. Nature, 2009, 461(7264):629-632.
JEONG C Y, KIM S. Dominant mode control of a grapheneembedded hybrid plasmonic resonator for a tunable nanolaser[J]. Opt. Express, 2014, 22:14819-14829.
BIAN Y, ZHENG Z, ZHAO X, et al.. Nanowire based hybrid plasmonic structures for low-threshold lasing at the subwavelength scale[J]. Opt. Commun., 2013, 287(2):245-249.
DZEDOLIK IV, LAPAYEVA S, PERESKOKOV V. Vortex lattice of surface plasmon polaritons[J]. Optics, 2016, 18(7):074007.
BORRA V, GEORGIEV D G, KARPOV V G. Cultivating metal whiskers by surface plasmon polariton excitation[J]. MRS Adv., 2016, 1(12):1-6.
WANG Z, LIU B, YUAN F, et al.. Synthesis and cathodoluminescence of Sb/P codoped GaN nanowires[J]. J. Lumin., 2014, 145(1):208-212.
OGAWA Y, TAKAHASHI S, NAKAJIME D, et al.. Imaging of surface plasmon polariton propagation on a Au thin film by using tip-enhanced Rayleigh scattering[J]. J. Lumin., 2013, 133(133):145-148.
HUANG H, ZHAO Q, JIAO J, et al.. Study of plasmonic nanolaser based on the deep subwavelength scale[J]. Physics, 2013, 62(13):537-544.
LI Z Q, PIAO R Q, ZHAO J J, et al.. A low-threshold nanolaser based on hybrid plasmonic waveguides at the deep subwavelength scale[J]. Chin. Phys. B, 2015, 24(7):441-447.
BIAN Y, ZHENG Z, ZHAO X, et al.. Nanowire based hybrid plasmonic structures for low-threshold lasing at the subwavelength scale[J]. Opt. Commun., 2013, 287:245-249.
BIAN Y, ZHENG Z, LIU Y, et al.. Coplanar plasmonic nanolasers based on edge-coupled hybrid plasmonic waveguides[J]. IEEE Photon. Technol. Lett., 2011, 23(13):884-886.
孙文钊. 三维光场限制表面等离子体激元纳米激光器的设计[D]. 哈尔滨:哈尔滨工业大学, 2016. SUN W Z. Three-dimensional Light Confinement Design in Hybrid Surface Plasminc Nanolaser[D]. Harbin:Harbin Institute of Technology, 2016. (in Chinese)
魏彪, 盛新志. 激光原理及应用[M]. 重庆:重庆大学出版社, 2007. WEI B, SHENG X Z. The Principle and Application of The Laser[M]. Chongqing:Chongqing University Press, 2007. (in Chinese)
LIU J T, XU B Z, ZHANG J, et al.. Gain-assisted indented plasmonic waveguide for low-threshold nanolaser applications[J]. Chin. Phys. B, 2012, 21(10):424-428.
魏来, 李芳, 周剑心. 基于表面等离子体激元的纳米激光器设计[J]. 光子学报, 2016, 45(10):19-23. WEI L, LI F, ZHOU J X. Design of surface plasmon polariton nano-laser.[J]. Acta Photon. Sinica, 2016, 45(10):19-23. (in Chinese)
李志全, 彭涛, 张明, 等. 基于混合表面等离子体波导的纳米激光器[J]. 中国激光, 2016, 43(10):1001005. LI Z Q, PENG T, ZHANG M, et al.. Nanolaser based on hybrid plasmonic waveguide[J]. Chin. J. Lasers, 2016, 43(10):1001005. (in Chinese)
LV H B, LIU Y M, YU Z Y, et al.. Hybrid plasmonic waveguides for low-threshold nanolaser applications[J]. Chin. Opt. Lett., 2014, 12(11):103-106.
王聪, 吴根柱, 周沛, 等. 纳米金属肋混合表面等离子体波导模式特性分析[J]. 光子学报, 2014, 43(9):1-5. WANG C, WU G Z, ZHOU P, et al.. Mode properties of hybrid plasmonic waveguide with an metal nano-rib[J]. Acta Photon. Sinica, 2014, 43(9):1-5. (in Chinese)
Localized Field and Recombination Rate Enhancement of Excitons in CsPbBr3 Optical Waveguide
Thermal Impact of High Power Semiconductor Laser with Voids in Solder Layer
Analysis of SPP Model Theory and Simulation in MIM Structure
Numerical Study on The Unsymmetrical Transmission Phenomenon in Metal Gratings
Fabrication of Subwavelength Metal Grating and Analysis with Vector Diffraction Theory
Related Author
Li-jun WANG
Chun-xu LIU
Ji-sen ZHANG
Yong-yi CHEN
Yue SONG
Hai-feng ZHAO
Yong-shi LUO
Li-gong ZHANG
Related Institution
State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences
State Key Laboratory of High Power Semiconductor Laser, Changchun University of Science and Technology, Changchun 130022, China
State Key Laboratory of High Power Semiconductor Laser, Changchun University of Science and Technology
Department of Electronic Engineering, Naval University of Engineering,, Wuhan
State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China