LI Zhan-guo, ZHANG Pei-pei, ZHANG Liang etc. Rubrene Crystal Films Using PVP as Interface Modification Layer Fabricated by Solution Methods[J]. Chinese Journal of Luminescence, 2018,39(2): 148-155
LI Zhan-guo, ZHANG Pei-pei, ZHANG Liang etc. Rubrene Crystal Films Using PVP as Interface Modification Layer Fabricated by Solution Methods[J]. Chinese Journal of Luminescence, 2018,39(2): 148-155 DOI: 10.3788/fgxb20183902.0148.
Rubrene Crystal Films Using PVP as Interface Modification Layer Fabricated by Solution Methods
In order to obtain the low cost and high crystalline thin films
the properties of rubrene films were investigated with Polyvinyl Pyrrolidone (PVP) as interface modification layer on the Si/SiO
2
substrate by solution process. First
PVP films were spin-coated on Si/SiO
2
substrate. The surface morphology and roughness (RMS) of PVP layer were analyzed by polarizing optical microscope (POM) and atomic force microscopy (AFM). Then
rubrene films were drop-coated on the PVP layer and dried out. The effects of PVP layer with the different PVP concentration and film-forming temperature on rubrene morphology were studied. The crystal structures of PVP films and rubrene films were carried out by X-ray diffraction. Finally
growth mechanism mode of rubrene films on the PVP interface modification layer was proposed. The results indicate that the temperature of 80-140℃ and lower concentration of PVP are apt to prepare spherulites with high crystallinity
and the crystals size becomes larger when the temperature increases. PVP used as interface modification layer is beneficial to improve film-forming property of rubrene and prepare crystalline films with high crystallinity.
关键词
Keywords
references
NAJAFOV H, LYU B, BIAGGIO I, et al.. Two mechanisms of exciton dissociation in rubrene single crystals[J]. Appl. Phys. Lett., 2010, 96(18):183302.
陈星明, 胡胜坤, 金玉, 等. 不同发光染料的顶发射有机电致发光器件的研制[J]. 发光学报, 2016, 37(4):446-451. CHEN X M, HU S K, JIN Y, et al.. Top-emitting organic light-emitting devices with different luminescent dyes[J]. Chin. J. Lumin., 2016, 37(4):446-451. (in Chinese)
PU H, LI H, YANG Z, et al.. Effect of content ratio on solution-processed high-k titanium-aluminum oxide dielectric films[J]. ECS Solid State Lett., 2013, 2(10):N35-N38.
ZHU L, GAO Y, LI X, et al.. Development of high-k hafnium-aluminum oxide dielectric films using sol-gel process[J]. J. Mater. Res., 2014, 29(15):1620-1625.
HAMILTON R, SMITH J, OGIER S, et al.. High-performance polymer-small molecule blend organic transistors[J]. Adv. Mater., 2009, 21(10-11):1166-1171.
SHIN N, KANG J, RICHTER L J, et al.. Vertically segregated structure and properties of small molecule-polymer blend semiconductors for organic thin-film ratnsistors[J]. Adv. Funct. Mater., 2013, 23(3):366-376.
林广庆, 李鹏, 熊贤风, 等. 不同表面修饰制备高性能柔性薄膜晶体管[J]. 发光学报, 2013, 34(10):1392-1399. LIN G Q, LI P, XIONG X F, et al.. Preparation of high-performance flexible organic thin-film transistor through different dielectric surface modification[J]. Chin. J. Lumin., 2013, 34(10):1392-1399. (in Chinese)
龙宇升, 康正, 廖列文, 等. 聚乙烯吡略烷酮的性质及测定[J]. 广州化工, 1999, 27(2):33-35. LONG Y S, KANG Z, LIAO L W, et al.. Properties and determination of polyvinyl pyrrolidone[J]. Guangzhou Chem. Ind., 1999, 27(2):33-35. (in Chinese)
YU X, YU X, ZHANG J, et al.. Efficiency boosting of inverted polymer solar cells with a polyvinylpyrrolidone-modified Al-doped ZnO electron transport layer[J]. Solar Energy Mater. Solar Cells, 2014, 128(9):307-312.
SU Y, LIU J, ZHENG L, et al.. Polymer assisted solution-processing of rubrene spherulites via solvent vapor annealing[J]. RSC Adv., 2012, 2(13):5779-5788.
JO P S, DUONG D T, PARK J, et al.. Control of rubrene polymorphs via polymer binders:applications in organic field-effect transistors[J]. Chem. Mater., 2015, 27(11):3979-3987.
张玉婷, 王卓, 孙洋, 等. 红荧烯薄膜生长及稳定性的研究[J]. 发光学报, 2017, 38(8):1047-1055. ZHANG Y T, WANG Z, SUN Y, et al.. Growth and stability properties of rubrene thin films[J]. Chin. J. Lumin., 2017, 38(8):1047-1055. (in Chinese)
WANG L, LI Y, ZOU F, et al.. Insight into crystallization process of rubrene by binary solvent mixtures[J]. RSC Adv., 2016, 6(5):3532-3538.
DIMITRAKOPOULOS C D, BROWN A R, POMP A. Molecular beam deposited thin films of pentacene for organic field effect transistor applications[J]. J. Appl. Phys., 1996, 80(4):2501-2508.
PARK S W, HWANG J M, CHOI J M, et al.. Rubrene thin-film transistors with crystalline and amorphous channels[J]. Appl. Phys. Lett., 2007, 90(15):153512.
LEE W H, LIM J A, KIM D H, et al.. Room-temperature self-organizing characteristics of soluble acene field-effect transistors[J]. Adv. Funct. Mater., 2008, 18(4):560-565.
征茂平, 顾明元, 金燕苹, 等. Ag-PVP复合薄膜的制备及其光谱特性[J]. 光学技术, 2000, 26(6):494-498. ZHENG M P, GU M Y, JIN Y P, et al.. Preparation absorption spectra of Ag-PVP nanocomposite film[J]. Opt. Tech., 2000, 26(6):494-498. (in Chinese)
RIBIC P R, KALIHARI V, FRISBIE C D, et al.. Growth of ultrathin pentacene films on polymeric substrates[J]. Phys. Rev. B, 2009, 80(11):115307.
TIWARI S P, KNAUER K A, DINDAR A, et al.. Performance comparison of pentacene organic field-effect transistors with SiO2 modified with octyltrichlorosilane or octadecyltrichlorosilane[J]. Org. Electron., 2012, 13(1):18-22.
NORTON D R, KELLER A. The spherulitic and lamellar morphology of melt-crystallized isotactic polypropylene[J]. Polymer, 1985, 26(5):704-716.
FIELITZ T R, HOLMES R J. Crystal morphology and growth in annealed rubrene thin films[J]. Cryst. Growth Design, 2016, 16(8):4720-4726.
LUO L, LIU G, HUANG L, et al.. Solution-based patterned growth of rubrene nanocrystals for organic field effect transistors[J]. Appl. Phys. Lett., 2009, 95(26):263312.
GRNSY L, PUSZTAI T, TEGZE G, et al.. Growth and form of spherulites[J]. Phys. Rev.E, 2005, 72(1):011605.
PARK S W, CHOI J M, LEE K H, et al.. Amorphous-to-crystalline phase transformation of thin film rubrene[J]. J. Phys. Chem. B, 2010, 114(17):5661-5665.