NING Ping-fan, LIU Hong-wei, NIU Ping-juan etc. Enhancement of Photo-stability of Colloidal CdSe/ZnS Quantum Dots Passivated in SiO<sub>2</sub>[J]. Chinese Journal of Luminescence, 2018,39(2): 109-114
NING Ping-fan, LIU Hong-wei, NIU Ping-juan etc. Enhancement of Photo-stability of Colloidal CdSe/ZnS Quantum Dots Passivated in SiO<sub>2</sub>[J]. Chinese Journal of Luminescence, 2018,39(2): 109-114 DOI: 10.3788/fgxb20183902.0109.
Enhancement of Photo-stability of Colloidal CdSe/ZnS Quantum Dots Passivated in SiO2
The photo-instability and degradation of colloidal quantum dots (QDs) are major challenges in their applications. We report photo-stability enhancement of colloidal CdSe/ZnS QDs passivated in SiO
2
thin film deposited by RF magnetron sputtering. First
the red (615 nm emission) CdSe/ZnS QDs were synthesized by tri-n-octylphosphine assisted successive ionic layer adsorption and reaction method. The QDs were then spin-coated to the SiO
2
/Si substrate
and a SiO
2
film with a thickness of 20 nm was deposited on the QDs as a passivation layer by magnetron sputtering. The photoluminescence spectra of passivated and un-passivated QDs were investigated by using a continuous wave laser source
which was irradiated in air and vacuum respectively. The results show that the PL intensity of the QDs without SiO
2
passivation decreases significantly
and the PL peak shifts to blue and the FWHM increases continuously with the increasing of the irradiation time. Comparative analysis shows that SiO
2
film can prevent the oxidation of QD surface from water vapor and oxygen molecules and thus the stability of CdSe/ZnS QDs is significantly improved.
关键词
Keywords
references
JUN S, JANG E. Bright and stable alloy core/multishell quantum dots[J]. Angewand. Chem., 2013, 125(2):707-710.
NING P, ZHANG C, LIU J G, et al.. Photoluminescence and thermal stability of Mn2+-doped CdSe/CdS/ZnS quantum dots[C]. Proceedings of The 13th China International Forum on Solid State Lighting, Beijing, China, 2016:63-65.
SHIRASAKI Y, SUPRAN G J, BAWENDI M G, et al.. Emergence of colloidal quantum-dot light-emitting technologies[J]. Nature, 2013,7:13-23.
CORDERO S R, CARSON P J, ESTABROOK R A, et al.. Photo-activated luminescence of CdSe quantum dot monolayers[J]. J. Phys. Chem.B, 2000, 104(51):12137-12142.
NAZZAL A Y, WANG X, QU L, et al.. Environmental effects on photoluminescence of highly luminescent CdSe and CdSe/ZnS core/shell nanocrystals in polymer thin films[J]. J. Phys. Chem.B, 2004, 108(18):5507-5515.
PECHSTEDT K, WHITTLE T, BAUMBERG J, et al.. Photoluminescence of colloidal CdSe/ZnS quantum dots:the critical effect of water molecules[J]. J. Phys. Chem.C, 2010, 114(28):12069-12077.
CARRILLO-CARRIN C, CRDENAS S, SIMONET B M, et al.. Quantum dots luminescence enhancement due to illumination with UV/Vis light[J]. Chem. Commun., 2009, 35:5214-5226.
MANNA L, SCHER E C, LI L S, et al.. Epitaxial growth and photochemical annealing of graded CdS/ZnS shells on colloidal CdSe nanorods[J]. J. Am. Chem. Soc., 2002, 124(24):7136-7145.
AGUILERA-SIGALAT J, ROCTON S, SNCHEZ-ROYO J F, et al.. Highly fluorescent and photostable organic-and water-soluble CdSe/ZnS core-shell quantum dots capped with thiols[J]. RSC Adv., 2012, 2:1632-1638.
ZHANG H, LIU Y, YE X, et al.. Photo-instability of CdSe/ZnS quantum dots in poly(methylmethacrylate) film[J]. J. Appl. Phys., 2013, 114:244308.
PATRA S, SAMANTA A. Effect of capping agent and medium on light-induced variation of the luminescence properties of CdTe quantum dots:a study based on fluorescence correlation spectroscopy, steady state and time-resolved fluorescence techniques[J]. J. Phys. Chem.C, 2014, 118(31):18187-18196.
HINES D A, BECKER M A, KAMAT P V. Photoinduced surface oxidation and its effect on the exciton dynamics of CdSe quantum dots[J]. J. Phys. Chem.C, 2012, 116(24):13452-13457.
JOHNSON R W, HULTQVIST A, BENT S F. A brief review of atomic layer deposition:from fundamentals to applications[J]. Mater. Today, 2014, 17(5):236-246.
IP A H, LABELLE A J, SARGENTA E H. Efficient, air-stable colloidal quantum dot solar cells encapsulated using atomic layer deposition of a nanolaminate barrier[J]. Appl. Phys. Lett., 2013,103(26):263905.
HANNA M C, MIC'IC'O I, SEONG M J, et al.. GaInP2 overgrowth and passivation of colloidal InP nanocrystals using metalorganic chemical vapor deposition[J]. Appl. Phys. Lett., 2004, 87:780.
WOGGON U, HERZ E, SCHPS O, et al.. Hybrid epitaxial-colloidal semiconductor nanostructures[J]. Nano Lett., 2005, 5(3):483-490.
KIM S H, SHER P H, HAHN Y B, et al.. Luminescence from single CdSe nanocrystals embedded in ZnO thin films using atomic layer deposition[J]. Nanotechnology, 2008, 19:365202.
LAMBERT K, DENDOOVEN J, DETAVERNIER C. Embedding quantum dot monolayers in Al2O3 using atomic layer deposition[J]. Chem. Mater., 2011, 23(2):126-128.
CHENG C Y, MAO M H. Photo-stability and time-resolved photoluminescence study of colloidal CdSe/ZnS quantum dots passivated in Al2O3 using atomic layer deposition[J]. J. Appl. Phys., 2016, 120:083103.
HAO J, ZHOU J, ZHANG C. A tri-n-octylphosphine-assisted successive ionic layer adsorption and reaction method to synthesize multilayered core-shell CdSe-ZnS quantum dots with extremely high quantum yield[J]. Chem. Commun., 2013, 49:6346-6348.