浏览全部资源
扫码关注微信
1.哈尔滨工程大学 材料科学与化学工程学院,黑龙江 哈尔滨 150001
2.中国科学院长春应用化学研究所 稀土资源利用国家重点实验室,吉林 长春 130022
Received:03 November 2017,
Revised:06 December 2017,
Published:2018-01
移动端阅览
Fei HE, Shi-li GAI, Piao-ping YANG, et al. Luminescence Modification and Application of The Lanthanide Upconversion Fluorescence Materials[J]. Chinese journal of luminescence, 2018, 39(1): 73-87.
Fei HE, Shi-li GAI, Piao-ping YANG, et al. Luminescence Modification and Application of The Lanthanide Upconversion Fluorescence Materials[J]. Chinese journal of luminescence, 2018, 39(1): 73-87. DOI: 10.3788/fgxb20183901.0092.
稀土上转换荧光材料因为其独特的4f电子能级排布所带来的特殊光学、磁性等物理性质而受到研究人员的广泛关注。特别是其独特的反斯托克斯光学性质所带来的近红外激光响应及紫外至近红外光区内丰富的荧光发射性质,更是被认为在荧光标记、生物成像、光学分析等领域具有重大的应用潜质。近些年,伴随材料软化学制备方法的进步,稀土上转换纳米材料的发光性质及其在多个领域内的应用研究取得了很大的进展。本文主要对稀土上转换荧光材料的发光性质调变及其在生物成像以及癌症治疗领域的应用研究进展加以阐述。
Due to its unique 4f electron configuration
the lanthanide upconversion fluorescence materials with special luminescence
magnetism properties have drawn considerable research attention in the world. Thereinto
the anti-Stokes upconversion luminescence property that can emit light in the field of UV to NIR region upon NIR laser also endow it with huge promising application potential in the field of fluorescence probe
bio-imaging
and fluorescence analysis. Recently
on account of big step of the development of the soft chemistry synthesis method
great progress of luminescence property and application of the lanthanide upconversion fluorescence materials have been made. Accordingly
in this work
we mainly focus on the recent research advances of the lanthanide upconversion luminescence modification and application in the field of bio-imaging and cancer therapy.
SUZUKI S , TESHIMA K , WAKABAYASHI T , et al . . Low-temperature flux growth and upconversion fluorescence of the idiomorphic hexagonal-system NaYF 4 and NaYF 4 ∶ Ln ( Ln =Yb, Er, Tm) crystals [J]. Cryst. Growth Des. , 2011 , 11 : 4825 - 4830 .
洪广言 . 稀土发光材料:基础与应用 [M]. 北京 : 科学出版社 , 2011 .
HONG G Y . Rare Earth Luminescence Material: Foundtion and Application [M]. Bejing : Science Press , 2011 .( in Chinese )
YI G , LU H , ZHAO S , et al . . Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF 4 ∶Yb,Er infrared-to-visible up-conversion phosphors [J]. Nano Lett. , 2004 , 4 ( 11 ): 2191 - 2196 .
CHEN D , HUANG P , YU Y , et al . . Dopant-induced phase transition: a new strategy of synthesizing hexagonal upconversion NaYF 4 at low temperature [J]. Chem. Commun. , 2011 , 47 : 5801 - 5803 .
AEBISCHER A , HOSTETTLER M , HAUSER J R , et al . . Structural and spectroscopic characterization of active sites in a family of light-emitting sodium lanthanide tetrafluorides [J]. Angew. Chem. Int. Ed. , 2006 , 45 : 2802 - 2806 .
CHEN D , YU Y , HUANG F , et al . . Phase transition from hexagonal Ln F 3 ( Ln =La, Ce, Pr) to cubic Ln 0.8 M 0.2 F 2.8 ( M =Ca, Sr, Ba) nanocrystals with enhanced upconversion induced by alkaline-earth doping [J]. Chem. Commun. , 2011 , 47 : 2601 - 2603 .
TAMRAKAR R K , BISEN D P , UPADHYAY K , et al . . Comparative study and role of Er 3+ and Yb 3+ concentrations on upconversion process of Gd 2 O 3 ∶Er 3+ Yb 3+ phosphors prepared by solid-state reaction and combustion method [J]. J. Phys. Chem. C , 2015 , 119 : 21072 - 21086 .
JIA C J , SUN L D , YOU L P , et al . . Selective synthesis of monazite- and zircon-type LaVO 4 nanocrystals [J]. J. Phys. Chem. B , 2005 , 109 ( 8 ): 3284 - 3290 .
HUANG P , ZHENG W , ZHOU S , et al . . Lanthanide-doped LiLuF 4 upconversion nanoprobes for the detection of disease biomarkers [J]. Angew. Chem. , 2014 , 126 : 1276 - 1281 .
XIANG G , ZHANG J , HAO Z , et al . . Importance of suppression of Yb 3+ de-excitation to upconversion enhancement in β-NaYF 4 ∶Yb 3+ /Er 3+ @β-NaYF 4 sandwiched structure nanocrystals [J]. Inorg. Chem. , 2015 , 54 : 3921 - 3928 .
XIE X , GAO N , DENG R , et al . . Mechanistic investigation of photon upconversion in Nd 3+ -sensitized core-shell nanoparticles [J]. J. Am. Chem. Soc. , 2013 , 135 : 12608 - 12611 .
VETRONE F , NACCACHE R , MAHALINGAM V , et al . . The active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles [J]. Adv. Funct. Mater. , 2009 , 19 : 2924 - 2929 .
CHEN Y , LIU B , DENG X , et al . . Multifunctional Nd 3+ -sensitized upconversion nanomaterials for synchronous tumor diagnosis and treatment [J]. Nanoscale , 2015 , 7 : 8574 - 8583 .
CHEN G , DAMASCO J , QIU H , et al . . Energy-cascaded upconversion in an organic dye-sensitized core/shell fluoride nanocrystal [J]. Nano Lett. , 2015 , 15 : 7400 - 7407 .
WANG Y F , LIU G Y , SUN L D , et al . . Nd 3+ -sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect [J]. ACS Nano , 2013 , 7 ( 8 ): 7200 - 7206 .
HUANG X , LIN J . Active-core/active-shell nanostructured design: an effective strategy to enhance Nd 3+ /Yb 3+ cascade sensitized upconversion luminescence in lanthanide-doped nanoparticles [J]. J. Mater. Chem. C , 2015 , 3 : 7652 - 7657 .
PICHAANDI J , BOYER J C , DELANEY K R , et al . . Two-photon laser (scanning and wide field) microscopy using Ln 3+ - doped NaYF 4 upconverting nanocrystals—a critical evaluation of their performance and potential in bio-imaging [J]. J. Phys. Chem. C , 2011 , 115 ( 39 ): 19054 - 19064 .
ZHANG X , TIAN G , YIN W , et al . . Controllable generation of nitric oxide by near-infrared-sensitized upconversion nanoparticles for tumor therapy [J]. Adv. Funct. Mater. , 2015 , 25 ( 20 ): 3049 - 3056 .
QIAN H S , ZHANG Y . Synthesis of hexagonal-phase core-shell NaYF 4 nanocrystals with tunable upconversion fluorescence [J]. Langmuir , 2008 , 24 : 12123 - 12125 .
LIU X , KONG X , ZHANG Y , et al . . Breakthrough in concentration quenching threshold of upconversion luminescence via spatial separation of the emitter doping area for bio-applications [J]. Chem. Commun. , 2011 , 47 ( 43 ): 11957 - 11959 .
DING B B , PENG H Y , QIAN H S , et al . . Unique upconversion core-shell nanoparticles with tunable fluorescence synthesized by a sequential growth process [J]. Adv. Mater. , 2015 , 3 ( 3 ): 1500649 .
WANG F , DENG R , WANG J , et al . . Tuning upconversion through energy migration in core-shell nanoparticles [J]. Nat. Mater. , 2011 , 10 ( 12 ): 968 - 973 .
LI X , LIU X , CHEVRIER D M , et al . . Energy migration upconversion in manganese(ii)-doped nanoparticles [J]. Angew. Chem. Int. Ed. , 2015 , 54 : 13312 - 13317 .
LIU Y , TU D , ZHU H , et al . . A strategy to achieve efficient dual-mode luminescence of Eu 3 + in lanthanides doped multifunctional NaGdF 4 nanocrystals [J]. Adv. Mater. , 2010 , 22 : 3266 - 3271 .
WEN H , ZHU H , CHEN X , et al . . Upconverting near-infrared light through energy management in core-shell-shell nanoparticles [J]. Angew. Chem. Int. Ed. , 2013 , 52 : 13419 - 13423 .
DENG R , QIN F , CHEN R , et al . . Temporal full-colour tuning through non-steady-state upconversion [J]. Nature Nanotechnol. , 2015 , 10 ( 3 ): 237 - 242 .
NIU N , HE F , GAI S , et al . . Rapid microwave reflux process for the synthesis of pure hexagonal NaYF 4 ∶Yb 3+ , Ln 3+ ,Bi 3+ ( Ln 3+ =Er 3+ ,Tm 3+ ,Ho 3+ ) and its enhanced UC luminescence [J]. J. Mater. Chem. , 2012 , 22 : 21613 - 21623 .
SCHIETINGER S , AICHELE T , WANG H Q , et al . . Plasmon-enhanced upconversion in single NaYF 4 ∶Yb 3+ /Er 3+ codoped nanocrystals [J]. Nano Lett. , 2010 , 10 ( 1 ): 134 - 138 .
ZHANG H , LI Y , IVANOV I A , et al . . Plasmonic modulation of the upconversion fluorescence in NaYF 4 ∶Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells [J]. Angew. Chem. Int. Ed. , 2010 , 49 : 2865 .
ZHANG H , XU D , HUANG Y , et al . . Highly spectral dependent enhancement of upconversion emission with sputtered gold island films [J]. Chem. Commun. , 2011 , 47 ( 3 ): 979 - 981 .
LIU N , QIN W , QIN G , et al . . Highly plasmon-enhanced upconversion emissions from Au@b-NaYF 4 ∶Yb,Tm hybrid nanostructures [J]. Chem. Commun. , 2011 , 47 : 7671 - 7673 .
SABOKTAKIN M , YE X , OH S J , et al . . Metal enhanced upconversion luminescence tunable through metal nanoparticle-nanophosphor separation [J]. ACS Nano , 2012 , 6 ( 10 ): 8758 - 8766 .
YU M , LI F , CHEN Z , et al . . Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors [J]. Anal. Chem. , 2009 , 81 ( 3 ): 930 - 935 .
LIU Q , FENG W , YANG T , et al . . Upconversion luminescence imaging of cells and small animals [J]. Nature Protocols , 2013 , 8 ( 10 ): 2033 - 2044 .
LIU Q , YANG T , FENG W , et al . . Blue-emissive upconversion nanoparticles for low-power-excited bioimaging in vivo [J]. J. Am. Chem. Soc. , 2012 , 134 ( 11 ): 5390 - 5397 .
LEE K T , NAM S H , BAE Y M , et al . . Real-time tracking of lanthanide ion doped upconverting nanoparticles in living cells [J]. Biophys. J. , 2012 , 102 ( 3 ): 200A .
BAE Y M , PARK Y I , NAM S H , et al . . Endocytosis, intracellular transport, and exocytosis of lanthanide-doped upconverting nanoparticles in single living cells [J]. Biomaterials , 2012 , 33 ( 35 ): 9080 - 9086 .
ZHAN Q , QIAN J , LIANG H , et al . . Using 915 nm laser excited Tm 3+ /Er 3+ /Ho 3+ -doped NaYbF 4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation [J]. ACS Nano , 2011 , 5 ( 5 ): 3744 - 3757 .
ZHANG H , LI Y , LIN Y , et al . . Composition tuning the upconversion emission in NaYF 4 ∶Yb/Tm hexaplate nanocrystals [J]. Nanoscale , 2011 , 3 ( 3 ): 963 - 966 .
SHAN J , CHEN J , MENG J , et al . . Biofunctionalization, cytotoxicity, and cell uptake of lanthanide doped hydrophobically ligated NaYF 4 upconversion nanophosphors [J]. J. Appl. Phys. , 2008 , 104 ( 9 ): 094308 .
WU S , HAN G , MILLIRON D J , et al . . Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals [J]. Proc. Natl. Acad. Sci. U. S. A. , 2009 , 106 ( 27 ): 10917 - 10921 .
OSTROWSKI A D , CHAN E M , GARGAS D J , et al . . Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals [J]. ACS Nano , 2012 , 6 ( 3 ): 2686 - 2692 .
XIONG L , CHEN Z , TIAN Q , et al . . High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors [J]. Anal. Chem. , 2009 , 81 ( 21 ): 8687 - 8694 .
SUN Y , PENG J , FENG W , et al . . Upconversion nanophosphors NaLuF 4 ∶Yb, Tm for lymphatic imaging in vivo by real-time upconversion luminescence imaging under ambient light and high-resolution X-ray CT [J]. Theranostics , 2013 , 3 ( 5 ): 346 - 353 .
NYK M , KUMAR R , OHULCHANSKYY T Y , et al . . High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm 3+ and Yb 3+ doped fluoride nanophosphors [J]. Nano Lett. , 2008 , 8 ( 11 ): 3834 - 3838 .
YANG T , SUN Y , LIU Q , et al . . Cubic sub-20 nm NaLuF 4 -based upconversion nanophosphors for high-contrast bioimaging in different animal species [J]. Biomaterials , 2012 , 33 ( 14 ): 3733 - 3742 .
LIU Q , SUN Y , YANG T , et al . . Sub-10 nm hexagonal lanthanide-doped NaLuF 4 upconversion nanocrystals for sensitive bioimaging in vivo [J]. J. Am. Chem. Soc. , 2011 , 133 ( 43 ): 17122 - 17125 .
HE M , HUANG P , ZHANG C , et al . . Dual phase-controlled synthesis of uniform lanthanide-doped NaGdF 4 upconversion nanocrystals via an OA/ionic liquid two-phase system for in vivo dual-modality imaging [J]. Adv. Funct. Mater. , 2011 , 21 ( 23 ): 4470 - 4477 .
SHEN J W , YANG C X , DONG L X , et al . . Incorporation of computed tomography and magnetic resonance imaging function into NaYF 4 ∶Yb/Tm upconversion nanoparticles for in vivo trimodal bioimaging [J]. Anal. Chem. , 2013 , 85 ( 24 ): 12166 - 12172 .
ZHOU J , ZHU X , CHEN M , et al . . Water-stable NaLuF 4 -based upconversion nanophosphors with long-term validity for multimodal lymphatic imaging [J]. Biomaterials , 2012 , 33 ( 26 ): 6201 - 6210 .
XING H , BU W , ZHANG S , et al . . Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging [J]. Biomaterials , 2012 , 33 ( 4 ): 1079 - 1089 .
ZHANG G , LIU Y , YUAN Q , et al . . Dual modal in vivo imaging using upconversion luminescence and enhanced computed tomography properties [J]. Nanoscale , 2011 , 3 ( 10 ): 4365 - 4371 .
JOHNSON N J J , OAKDEN W , STANISZ G J , et al . . Size-tunable, ultrasmall NaGdF 4 nanoparticles: insights into their T-1 MRI contrast enhancement [J]. Chem. Mater. , 2011 , 23 ( 16 ): 3714 - 3722 .
ZHOU J , SUN Y , DU X , et al . . Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties [J]. Biomaterials , 2010 , 31 ( 12 ): 3287 - 3295 .
ZHOU J , YU M , SUN Y , et al . . Fluorine-18-labeled Gd 3+ /Yb 3+ /Er 3+ co-doped NaYF 4 nanophosphors for multimodality PET/MR/UCL imaging [J]. Biomaterials , 2011 , 32 ( 4 ): 1148 - 1156 .
SUN Y , ZHU X , PENG J , et al . . Core-shell lanthanide upconversion nanophosphors as four-modal probes for tumor angiogenesis imaging [J]. ACS Nano , 2013 , 7 ( 12 ): 11290 - 11300 .
LIU Q , SUN Y , LI C , et al . . F-18-labeled magnetic-upconversion nanophosphors via rare-earth cation-assisted ligand assembly [J]. ACS Nano , 2011 , 5 ( 4 ): 3146 - 3157 .
WANG C , CHENG L , LIU Z . Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics [J]. Theranostics , 2013 , 3 ( 5 ): 317 - 330 .
ZHANG P , STEELANT W , KUMAR M , et al . . Versatile photosensitizers for photodynamic therapy at infrared excitation [J]. J. Am. Chem. Soc. , 2007 , 129 ( 15 ): 4526 - 4530 .
GUO Y , KUMAR M , ZHANG P . Nanoparticle-based photosensitizers under CW infrared excitation [J]. Chem. Mater. , 2007 , 19 ( 25 ): 6071 - 6072 .
CHEN F , ZHANG S , BU W , et al . . A uniform sub-50 nm-sized magnetic/upconversion fluorescent bimodal imaging agent capable of generating singlet oxygen by using a 980 nm laser [J]. Chem. - A Eur. J. , 2012 , 18 ( 23 ): 7082 - 7090 .
GUO H , QIAN H , IDRIS N M , et al . . Singlet oxygen-induced apoptosis of cancer cells using upconversion fluorescent nanoparticles as a carrier of photosensitizer [J]. Nanomed. Nanotechnol. Bio. Med. , 2010 , 6 ( 3 ): 486 - 495 .
QIAN H S , GUO H C , HO P C L , et al . . Mesoporous-silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy [J]. Small , 2009 , 5 ( 20 ): 2285 - 2290 .
HOU Z , LI C , MA P , et al . . Electrospinning preparation and drug-delivery properties of an up-conversion luminescent porous NaYF 4 ∶Yb 3+ ,Er 3+ @silica fiber nanocomposite [J]. Adv. Funct. Mater. , 2011 , 21 ( 12 ): 2356 - 2365 .
HOU Z , LI C , MA P , et al . . Up-conversion luminescent and porous NaYF 4 ∶Yb 3+ ,Er 3+ @SiO 2 nanocomposite fibers for anti-cancer drug delivery and cell imaging [J]. Adv. Funct. Mater. , 2012 , 22 ( 13 ): 2713 - 2722 .
GAI S , YANG P , LI C , et al . . Synthesis of magnetic, up-conversion luminescent, and mesoporous core-shell-structured nanocomposites as drug carriers [J]. Adv. Funct. Mater. , 2010 , 20 ( 7 ): 1166 - 1172 .
CHIEN Y H , CHOU Y L , WANG S W , et al . . Near-infrared light photocontrolled targeting, bioimaging, and chemotherapy with caged upconversion nanoparticles in vitro and in vivo [J]. ACS Nano , 2013 , 7 ( 10 ): 8516 - 8528 .
YAN B , BOYER J C , BRANDA N R , et al . . Near-infrared light-triggered dissociation of block copolymer micelles using upconverting nanoparticles [J]. J. Am. Chem. Soc. , 2011 , 133 ( 49 ): 19714 - 19717 .
LI W , WANG J , REN J , et al . . Near-infrared upconversion controls photocaged cell adhesion [J]. J. Am. Chem. Soc. , 2014 , 136 ( 6 ): 2248 - 2251 .
DONG B , XU S , SUN J , et al . . Multifunctional NaYF 4 ∶Yb 3+ ,Er 3+ @agcore/shell nanocomposites: integration of upconversion imaging and photothermal therapy [J]. J. Mater. Chem. , 2011 , 21 ( 17 ): 6193 - 6200 .
CHENG L , YANG K , LI Y , et al . . Multifunctional nanoparticles for upconversion luminescence/mr multimodal imaging and magnetically targeted photothermal therapy [J]. Biomaterials , 2012 , 33 ( 7 ): 2215 - 2222 .
LV R C , YANG P P , HE F , et al . . A yolk-like multifunctional platform for multimodal imaging and synergistic therapy triggered by a single near-infrared light [J]. ACS Nano , 2015 , 9 ( 2 ): 1630 - 1647 .
QIAN L P , ZHOU L H , TOO H P , et al . . Gold decorated NaYF 4 ∶Yb,Er/NaYF 4 /silica (core/shell/shell) upconversion nanoparticles for photothermal destruction of BE(2)-C neuroblastoma cells [J]. J. Nanopart. Res. , 2011 , 13 ( 2 ): 499 - 510 .
HE F , YANG G X , YANG P P , et al . . A new single 808 nm NIR light-induced imaging-guided multifunctional cancer therapy platform [J]. Adv. Funct. Mater. , 2015 , 25 ( 25 ): 3966 - 3976 .
0
Views
106
下载量
11
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution