浏览全部资源
扫码关注微信
华东师范大学化学与分子工程学院 上海市绿色化学与化工过程绿色化重点实验室,上海 200062
Received:12 October 2017,
Revised:10 December 2017,
Published:2018-01
移动端阅览
Xian-fu MENG, Yan-yan LIU, Wen-bo BU. Rare-earth Upconversion Nanomaterials for Medical Magnetic Resonance Imaging[J]. Chinese journal of luminescence, 2018, 39(1): 69-91.
Xian-fu MENG, Yan-yan LIU, Wen-bo BU. Rare-earth Upconversion Nanomaterials for Medical Magnetic Resonance Imaging[J]. Chinese journal of luminescence, 2018, 39(1): 69-91. DOI: 10.3788/fgxb20183901.0069.
上转换发光纳米颗粒是一类遵循反斯托克斯原理的新型发光材料,具有发光强度高、发光稳定、无组织背景荧光、无光漂白、低毒性以及较好的生物相容性等优点,其激发光为红外或者近红外光,活体组织穿透深度高,在生物医学检测、诊断以及疾病治疗等方面均具有潜在的应用价值。磁共振成像是目前医学临床常用的影像检测手段之一,具有软组织成像质量高、空间分辨率高、无辐射、无损伤等优点,在心脑血管、肿瘤等疾病的影像诊断方面具有重要作用。本文将聚焦于近年来稀土上转换发光纳米材料在磁共振影像方面的研究进展,通过介绍磁共振成像机理、磁共振造影剂的构建、上转换发光纳米材料的设计及在磁共振医学影像、疾病治疗等方面的应用,并结合我们课题组基于UCNP医学磁共振多模态影像的相关研究进展,对上转换发光纳米颗粒在磁共振成像方面的应用研究进行探讨和展望。
Upconversion nanoparticle (UCNP) following anti-Stokes principle is a novel type of luminescence materials
which possesses many unique merits such as high luminescence intensity
luminous stability
no background fluorescence
no bleaching
low toxicity and good biocompatibility. The infrared or near infrared excitation light endows UCNP with deep penetration in living tissues for potential applications in biomedical detection
diagnose and treatment. Magnetic resonance imaging (MRI)
as one of the commonly used techniques in clinical
has many special advantages like high quality of soft tissue imaging
high spatial resolution
no radiation and no damage
which plays a significant role in diagnosis of cardiovascular and cerebrovascular diseases. In this review
we focus on the recent researches in regard to rare-earth upconversion nanomaterials for MRI diagnosis and application. The mechanism of magnetic resonance imaging
the construction of MRI contrast agents
and the design and synthesis of UCNP-based multi-functional nanomaterials for MRI diagnosis and disease therapy have been introduced in detail
on the other hand
by means of the relevant researches reported by our group
which are based on UCNP for medical MRI and multimodal imaging
the prospects of UCNP in the application of MRI have also been discussed in this review.
BLOEMBERGEN N . Solid state infrared quantum counters [J]. Phys. Rev. Lett. , 1959 , 2 ( 3 ): 84 - 85 .
WU S , HAN G , MILLIRON D J , et al . . Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals [J]. Proc. National Acad. Sci. , 2009 , 106 ( 27 ): 10917 - 10921 .
CHAN E M . Combinatorial approaches for developing upconverting nanomaterials: high-throughput screening, modeling, and applications [J]. Chem. Soc. Rev. , 2015 , 44 ( 6 ): 1653 - 1679 .
FAN W , HUANG P , CHEN X . Overcoming the Achilles' heel of photodynamic therapy [J]. Chem. Soc. Rev. , 2016 , 45 ( 23 ): 6488 - 6519 .
LI X , ZHANG F , ZHAO D . Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure [J]. Chem. Soc. Rev. , 2015 , 44 ( 6 ): 1346 - 1378 .
PARK Y I , LEE K T , SUH Y D , et al . . Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging [J]. Chem. Soc. Rev. , 2015 , 44 ( 6 ): 1302 - 1317 .
SEDLMEIER A , GORRIS H H . Surface modification and characterization of photon-upconverting nanoparticles for bioanalytical applications [J]. Chem. Soc. Rev. , 2015 , 44 ( 6 ): 1526 - 1560 .
SHANMUGAM V , SELVAKUMAR S , YEH C S . Near-infrared light-responsive nanomaterials in cancer therapeutics [J]. Chem. Soc. Rev. , 2014 , 43 ( 17 ): 6254 - 6287 .
YANG D , MA P A , HOU Z , et al . . Current advances in lanthanide ion ( Ln 3+ )-based upconversion nanomaterials for drug delivery [J]. Chem. Soc. Rev. , 2015 , 44 ( 6 ): 1416 - 1448 .
CHEN F , BU W , CAI W , et al . . Functionalized upconversion nanoparticles: versatile nanoplatforms for translational research [J]. Curr. Mol. Med. , 2013 , 13 ( 10 ): 1613 - 1632 .
RAMASAMY P , CHANDRA P , RHEE S W , et al . . Enhanced upconversion luminescence in NaGdF 4 ∶Yb, Er nanocrystals by Fe 3+ doping and their application in bioimaging [J]. Nanoscale , 2013 , 5 ( 18 ): 8711 - 8717 .
CHEN W , ZHENG R , BAADE P D , et al . . Cancer statistics in China, 2015 [J]. CA Cancer J. Clin. , 2016 , 66 ( 2 ): 115 - 132 .
PENFIELD J G , JR REILLY R F . What nephrologists need to know about gadolinium [J]. Nat. Rev. Nephrol. , 2007 , 3 ( 12 ): 654 .
LEE S H , KIM B H , NA H B , et al . . Paramagnetic inorganic nanoparticles as T 1 MRI contrast agents [J]. Wiley Interdiscip. Rev. : Nanomed.Nanobiotechnol. , 2014 , 6 ( 2 ): 196 - 209 .
赵喜平 . 磁共振成像系统的原理及其应用 [M]. 北京 : 科学出版社 , 2000 .
ZHAO X P . The Principle and Application of Magnetic Resonance Imaging System [M]. Beijing : Science Press , 2000 . ( in Chinese )
赵喜平 . 磁共振成像 [M]. 北京 : 科学出版社 , 2004 .
ZHAO X P . Magnetic Resonance Imaging [M]. Beijing : Science Press , 2004 . ( in Chinese )
黄继英 . 磁共振成像原理 [M]. 西安 : 陕西科学技术出版社 , 1998 .
HUANG J Y . The Principle of Magnetic Resonance Imaging [M]. Xi'an : Shaanxi Science and Technology Press , 1998 . ( in Chinese )
AIME S , BOTTA M , FASANO M , et al . . Lanthanide (Ⅲ) chelates for NMR biomedical applications [J]. Chem. Soc. Rev. , 1998 , 27 ( 1 ): 19 - 29 .
DEBROYE E , PARAC-VOGT T N . Towards polymetallic lanthanide complexes as dual contrast agents for magnetic resonance and optical imaging [J]. Chem. Soc. Rev. , 2014 , 43 ( 23 ): 8178 - 8192 .
CARAVAN P , ELLISON J J , MCMURRY T J , et al . . Gadolinium (Ⅲ) chelates as MRI contrast agents: structure, dynamics, and applications [J]. Chem. Rev. , 1999 , 99 ( 9 ): 2293 - 352 .
熊国欣 , 李立本 . 核磁共振成像原理 [M]. 北京 : 科学出版社 , 2007 .
XIONG G X , LI L B . Principle of Nuclear Magnetic Resonance Imaging [M]. Beijing : Science Press , 2007 . ( in Chinese )
NICHOLLS F J , ROTZ M W , GHUMAN H , et al . . DNA-gadolinium-gold nanoparticles for in vivo T1 MR imaging of transplanted human neural stem cells [J]. Biomaterials , 2016 , 77 : 291 - 306 .
RAMMOHAN N , MACRENARIS K W , MOORE L K , et al . . Nanodiamond-gadolinium (Ⅲ) aggregates for tracking cancer growth in vivo at high field [J]. Nano Lett. , 2016 , 16 ( 12 ): 7551 - 7564 .
YANG CT , PADMANABHAN P , GULY S B Z . Gadolinium (Ⅲ) based nanoparticles for T 1 -weighted magnetic resonance imaging probes [J]. RSC Adv. , 2016 , 6 ( 65 ): 60945 - 60966 .
JOHNSON N J , HE S , NGUYEN HUU V A , et al . . Compact micellization: a strategy for ultrahigh T 1 magnetic resonance contrast with gadolinium-based nanocrystals [J]. ACS Nano , 2016 , 10 ( 9 ): 8299 - 8307 .
RAMMOHAN N . Modular Carbon and Gold Nanoparticles for High Field MR Imaging and Theranostics [D]. Evanston : Northwestern University , 2016 .
TONG S , HOU S , ZHENG Z , et al . . Coating optimization of superparamagnetic iron oxide nanoparticles for high T 2 relaxivity [J]. Nano Lett. , 2010 , 10 ( 11 ): 4607 - 13 .
SHOKROLLAHI H . Contrast agents for MRI [J]. Mater. Sci. Eng. C , 2013 , 33 ( 8 ): 4485 - 4497 .
龚洪翰 . MRI磁共振成像原理与临床应用 [M]. 南昌 : 江西科学技术出版社 , 2006 .
GONG H H . The Principle and Clinical Application of MRI Magnetic Resonance Imaging [M]. Nanchang : Jiangxi Science and Technology Press , 2006 . ( in Chinese )
余小多 . 磁共振成像原理及肿瘤方面应用 [J]. 抗癌之窗 , 2014 ( 3 ): 6 - 10 .
YU X D . The principle of magnetic resonance imaging and the application of tumor [J]. Anti - cancer Window , 2014 ( 3 ): 6 - 10 . ( in Chinese )
许乙凯 . 磁共振造影剂及临床应用 [M]. 北京 : 人民卫生出版社 , 2003 .
XU Y K . Magnetic Resonance Contrast Agent and Its Clinical Application [M]. Beijing : People's Health Press , 2003 . ( in Chinese )
VAN BOCHOVE G S , PAULIS L E , SEGERS D , et al . . Contrast enhancement by differently sized paramagnetic MRI contrast agents in mice with two phenotypes of atherosclerotic plaque [J]. Contrast Media Mol. Imaging , 2011 , 6 ( 1 ): 35 .
AUZEL F . Upconversion and anti-Stokes processes with f and d ions in solids [J]. Chem. Rev. , 2004 , 104 ( 1 ): 139 - 174 .
JOUBERT M F . Photon avalanche upconversion in rare earth laser materials [J]. Opt. Mater. , 1999 , 11 ( 2 ): 181 - 203 .
GREBENIK E A , KOSTYUK A B , DEYEV S M . Upconversion nanoparticles and their hybrid assemblies for biomedical applications [J]. Russ. Chem. Rev. , 2016 , 85 ( 12 ): 1277 - 1296 .
GAMELIN D R , GÜDEL H U . Design of luminescent inorganic materials: new photophysical processes studied by optical spectroscopy [J]. ACC Chem. Res. , 2000 , 33 ( 4 ): 235 - 242 .
GAMELIN D R , GUDEL H U . Transition Metal and Rare Earth Compounds [M]. Berlin : Springer . 2001 : 1 - 56 .
YANG Y , ZHAO Q , FENG W , et al . . Luminescent chemodosimeters for bioimaging [J]. Chem. Rev. , 2013 , 113 ( 1 ): 192 - 270 .
ZHOU J , LIU Z , LI F . Upconversion nanophosphors for small-animal imaging [J]. Chem. Soc. Rev. , 2012 , 41 ( 3 ): 1323 - 1349 .
WANG F , HAN Y , LIM C S , et al . . Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping [J]. Nature , 2010 , 463 ( 7284 ): 1061 .
WANG F , LIU X . Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals [J]. Chem. Soc. Rev. , 2009 , 38 ( 4 ): 976 - 89 .
KR MER K W , BINER D , FREI G , et al . . Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors [J]. Chem. Mater. , 2004 , 16 ( 7 ): 1244 - 1251 .
LIU Q , SUN Y , YANG T , et al . . Sub-10 nm hexagonal lanthanide-doped NaLuF 4 upconversion nanocrystals for sensitive bioimaging in vivo [J]. J. Am. Chem. Soc. , 2011 , 133 ( 43 ): 17122 - 17125 .
MARTIN N , BOUTINAUD P , MAHIOU R , et al . . Preparation of fluorides at 80 ℃ in the NaF-(Y, Yb, Pr) F 3 system [J]. J. Mater. Chem. , 1999 , 9 ( 1 ): 125 - 128 .
王猛 , 密丛丛 , 王单 , 等 . NaYF 4 ∶Yb,Er上转换荧光纳米颗粒的共沉淀法合成及表征 [J]. 光谱学与光谱分析 , 2009 , 29 ( 12 ): 3327 - 3331 .
WANG M , MI C C , WANG D , et al . . Synthesis and characterization of NaYF 4 ∶Yb,Er upconversion fluorescent nanoparticles by coprecipitation method [J]. Spectrosc. Spect. Anal. , 2009 , 29 ( 12 ): 3327 - 3331 . ( in Chinese )
BISWAS A , MACIEL G , FRIEND C , et al . . Upconversion properties of a transparent Er 3+ -Yb 3+ co-doped LaF 3 -SiO 2 glass-ceramics prepared by sol-gel method [J]. J. Non - Cryst. Solids , 2003 , 316 ( 2 ): 393 - 397 .
ZHANG Y W , SUN X , SI R , et al . . Single-crystalline and monodisperse LaF 3 triangular nanoplates from a single-source precursor [J]. J. Am. Chem. Soc. , 2005 , 127 ( 10 ): 3260 - 3261 .
WANG F , LIU X . Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF 4 nanoparticles [J]. J. Am. Chem. Soc. , 2008 , 130 ( 17 ): 5642 - 5643 .
WANG F , DENG R , WANG J , et al . . Tuning upconversion through energy migration in core-shell nanoparticles [J]. Nat. Mater. , 2011 , 10 ( 12 ): 968 .
LI Z , ZHANG Y , JIANG S . Multicolor core/shell-structured upconversion fluorescent nanoparticles [J]. Adv. Mater. , 2008 , 20 ( 24 ): 4765 - 4769 .
YI G S , CHOW G M . Water-soluble NaYF 4 ∶Yb, Er (Tm)/NaYF 4 /polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence [J]. Chem. Mater. , 2007 , 19 ( 3 ): 341 - 343 .
WANG L , LI Y . Na(Y 1.5 Na 0.5 )F 6 single-crystal nanorods as multicolor luminescent materials [J]. Nano Lett. , 2006 , 6 ( 8 ): 1645 - 1649 .
GARCIA J , KUDAWEDAGEDARA A N , ALLEN M J . Physical properties of Eu 2+ -containing cryptates as contrast agents for ultrahigh-field magnetic resonance imaging [J]. Eur. J. Inorg. Chem. , 2012 , 2012 ( 12 ): 2135 - 2140 .
PARK Y I , KIM H M , KIM J H , et al . . Theranostic probe based on lanthanide-doped nanoparticles for simultaneous in vivo dual-modal imaging and photodynamic therapy [J]. Adv. Mater. , 2012 , 24 ( 42 ): 5755 - 5761 .
CHEN F , ZHANG S , BU W , et al . . A uniform sub-50 nm-sized magnetic/upconversion fluorescent bimodal imaging agent capable of generating singlet oxygen by using a 980 nm laser [J]. Chem. A Eur. J. , 2012 , 18 ( 23 ): 7082 - 7090 .
NACCACHE R , CHEVALLIER P , LAGUEUX J , et al . . High relaxivities and strong vascular signal enhancement for NaGdF 4 nanoparticles designed for dual MR/optical imaging [J]. Adv. Healthcare Mater. , 2013 , 2 ( 11 ): 1478 - 1488 .
KUMAR R , NYK M , OHULCHANSKYY T Y , et al . . Combined optical and MR bioimaging using rare earth ion doped NaYF 4 nanocrystals [J]. Adv. Funct. Mater. , 2009 , 19 ( 6 ): 853 - 859 .
ZHANG X , BLASIAK B , MARENCO A J , et al . . Design and regulation of NaHoF 4 and NaDyF 4 nanoparticles for high-field magnetic resonance imaging [J]. Chem. Mater. , 2016 , 28 ( 9 ): 3060 - 3072 .
NI D , ZHANG J , BU W , et al . . PEGylated NaHoF 4 nanoparticles as contrast agents for both X-ray computed tomography and ultra-high field magnetic resonance imaging [J]. Biomaterials , 2016 , 76 : 218 - 225 .
DAS G K , JOHNSON N J , CRAMEN J , et al . . NaDyF 4 nanoparticles as T 2 contrast agents for ultrahigh field magnetic resonance imaging [J]. J. Phys. Chem. Lett. , 2012 , 3 ( 4 ): 524 - 529 .
HU F , ZHAO Y S . Inorganic nanoparticle-based T 1 and T 1 / T 2 magnetic resonance contrast probes [J]. Nanoscale , 2012 , 4 ( 20 ): 6235 - 6243 .
XIAO Q , BU W , REN Q , et al . . Radiopaque fluorescence-transparent TaO x decorated upconversion nanophosphors for in vivo CT/MR/UCL trimodal imaging [J]. Biomaterials , 2012 , 33 ( 30 ): 7530 - 7539 .
LIU C , GAO Z , ZENG J , et al . . Magnetic/upconversion fluorescent NaGdF 4 ∶Yb,Er nanoparticle-based dual-modal molecular probes for imaging tiny tumors in vivo [J]. ACS Nano , 2013 , 7 ( 8 ): 7227 .
SUPKOWSKI R M , HORROCKS W D . Displacement of inner-sphere water molecules from Eu 3+ analogues of Gd 3+ MRI contrast agents by carbonate and phosphate anions: dissociation constants from luminescence data in the rapid-exchange limit [J]. Inorg. Chem. , 1999 , 38 ( 24 ): 5616 - 5619 .
NIVOROZHKIN A L , KOLODZIEJ A F , CARAVAN P , et al . . Enzyme-activated Gd 3+ magnetic resonance imaging contrast agents with a prominent receptor-induced magnetization enhancement [J]. Angew. Chem. Int. Ed. , 2001 , 40 ( 15 ): 2903 - 2906 .
SITHARAMAN B , KISSELL K R , HARTMAN K B , et al . . Superparamagnetic gadonanotubes are high-performance MRI contrast agents [J]. Chem. Commun. , 2005 , 31 : 3915 - 3917 .
MI P , KOKURYO D , CABRAL H , et al . . Hydrothermally synthesized PEGylated calcium phosphate nanoparticles incorporating Gd-DTPA for contrast enhanced MRI diagnosis of solid tumors [J]. J. Control. Release , 2014 , 174 : 63 - 71 .
KIRCHER M F , DE LA ZERDA A , JOKERST J V , et al . . A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle [J]. Nat. Med. , 2012 , 18 ( 5 ): 829 - 834 .
KATTEL K , PARK J Y , XU W , et al . . A facile synthesis, in vitro and in vivo MR studies of D-glucuronic acid-coated ultrasmall Ln 2 O 3 ( Ln = Eu, Gd, Dy, Ho, and Er) nanoparticles as a new potential MRI contrast agent [J]. ACS Appl. Mater. Interf. , 2011 , 3 ( 9 ): 3325 - 3334 .
KIM T , MOMIN E , CHOI J , et al . . Mesoporous silica-coated hollow manganese oxide nanoparticles as positive T 1 contrast agents for labeling and MRI tracking of adipose-derived mesenchymal stem cells [J]. J. Am. Chem. Soc. , 2011 , 133 ( 9 ): 2955 - 2961 .
ALRIC C , TALEB J , DUC G L , et al . . Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging [J]. J. Am. Chem. Soc. , 2008 , 130 ( 18 ): 5908 - 5915 .
CHEN F , BU W , ZHANG S , et al . . Positive and negative lattice shielding effects co-existing in Gd (Ⅲ) ion doped bifunctional upconversion nanoprobes [J]. Adv. Funct. Mater. , 2011 , 21 ( 22 ): 4285 - 4294 .
JOHNSON N J , OAKDEN W , STANISZ G J , et al . . Size-tunable, ultrasmall NaGdF 4 nanoparticles: insights into their T1 MRI contrast enhancement [J]. Chem. Mater. , 2011 , 23 ( 16 ): 3714 - 3722 .
XING H , ZHANG S , BU W , et al . . Ultrasmall NaGdF 4 nanodots for efficient MR angiography and atherosclerotic plaque imaging [J]. Adv. Mater. , 2014 , 26 ( 23 ): 3867 - 3872 .
NI D , ZHANG J , WANG J , et al . . Oxygen vacancy enables markedly enhanced magnetic resonance imaging-guided photothermal therapy of a Gd 3+ -doped contrast agent [J]. ACS Nano , 2017 , 11 ( 4 ): 4256 .
THUEN M , BERRY M , PEDERSEN T B , et al . . Manganese-enhanced MRI of the rat visual pathway: acute neural toxicity, contrast enhancement, axon resolution, axonal transport, and clearance of Mn 2+ [J]. J. Magn. Reson. Imaging , 2008 , 28 ( 4 ): 855 - 865 .
DONG H , SUN L D , YAN C H . Basic understanding of the lanthanide related upconversion emissions [J]. Nanoscale , 2013 , 5 ( 13 ): 5703 - 5714 .
LI Z P , DONG B , HE Y Y , et al . . Selective enhancement of green upconversion emissions of Er 3+ ∶Yb 3 Al 5 O 12 nanocrystals by high excited state energy transfer with Yb 3+ -Mn 2+ dimer sensitizing [J]. J. Lumin. , 2012 , 132 ( 7 ): 1646 - 168 .
LI X , XUE Z , LIU H . Hydro-thermal synthesis of PEGylated Mn 2+ dopant controlled NaYF 4 ∶Yb/Er up-conversion nano-particles for multi-color tuning [J]. J. Alloys Compd. , 2016 , 681 : 379 - 383 .
庄宇 , 毛春生 , 赵丽君 . Mn 2+ 掺杂NaFY 4 ∶Yb, Er晶体的形貌及发光性能研究 [J]. 电子显微学报 , 2013 , 32 ( 6 ): 474 - 478 .
ZHUANG Y , MAO C S , ZHAO L J . Study on the morphology and luminescence properties of Mn 2+ doped NaFY 4 ∶Yb, Er crystal [J]. J. Electron Microsc. , 2013 , 32 ( 6 ): 474 - 478 . ( in Chinese )
SHARMA N , SHARMA V , BOHRA R , et al . . Functionalized upconversion nanoparticles: versatile nanoplatforms for translational research [J]. Cur. Mol. Med. , 2013 , 13 ( 10 ): 1613 - 1632 .
TIAN G , GU Z , ZHOU L , et al . . Mn 2+ dopant-controlled synthesis of NaYF 4 ∶Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery [J]. Adv. Mater. , 2012 , 24 ( 9 ): 1226 - 1231 .
DENG X , DAI Y , LIU J , et al . . Multifunctional hollow CaF 2 ∶Yb 3+ /Er 3+ /Mn 2+ -poly(2-aminoethyl methacrylate) microspheres for Pt(Ⅳ) pro-drug delivery and tri-modal imaging [J]. Biomaterials , 2015 , 50 ( Supplement C ): 154 - 163 .
LUO Y , DU S , ZHANG W , et al . . Core@shell Fe 3 O 4 @Mn 2+ -doped NaYF 4 ∶Yb/Tm nanoparticles for triple-modality T 1 / T 2 -weighted MRI and NIR-to-NIR upconversion luminescence imaging agents [J]. RSC Adv. , 2017 , 7 ( 60 ): 37929 - 37937 .
SOESBE T C , RATNAKAR S J , MILNE M , et al . . Maximizing T 2 -exchange in Dy 3+ DOTA-(amide) X chelates: fine-tuning the water molecule exchange rate for enhanced T 2 contrast in MRI [J]. Magn. Reson. Med. , 2014 , 71 ( 3 ): 1179 - 1185 .
TYMINSKI A , GRZYB T , LIS S . RE VO 4 -based nanomaterials ( RE =Y, La, Gd, and Lu) as hosts for Yb 3+ /Ho 3+ ,Yb 3+ /Er 3+ ,and Yb 3+ /Tm 3+ ions: structural and up-conversion luminescence studies [J]. J. Am. Ceram. Soc. , 2016 , 99 ( 10 ): 3300 - 3308 .
CHEN D , LIU L , HUANG P , et al . . Nd 3+ -sensitized Ho 3+ single-band red upconversion luminescence in coreshell nanoarchitecture [J]. J. Phys. Chem. Lett. , 2015 , 6 ( 14 ): 2833 - 2840 .
CHEN B , LIU Y , XIAO Y , et al . . Amplifying excitation-power sensitivity of photon upconversion in a NaYbF 4 ∶Ho nanostructure for direct visualization of electromagnetic hotspots [J]. J. Phys. Chem. Lett. , 2016 , 7 ( 23 ): 4916 - 4921 .
ZHAN Q , QIAN J , LIANG H , et al . . Using 915 nm laser excited Tm 3+ /Er 3+ /Ho 3+ -doped NaYbF 4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation [J]. ACS Nano , 2011 , 5 ( 5 ): 3744 - 3757 .
郑晓宇 , 时朔 , 孙聆东 , 等 . 应用于高磁场强度磁共振成像的稀土纳米颗粒造影剂 [C]. 中国化学会第 29 届学术年会摘要集 , 北京 , 2014 .
ZHENG X Y , SHI S , SUN L D , et al . . Rare earth nanoparticle contrast agent used in high magnetic field intensity magnetic resonance imaging [C]. Summary of The Twenty - ninth Annual Conference of The Chinese Chemical Association , Beijing, China , 2014 . ( in Chinese )
LI H , LIU G , WANG J , et al . . Hydrothermal synthesis, down-/enhanced up-converting, color tuning luminescence, energy transfer and paramagnetic properties of Ln 3+ ( Ln =Eu/Dy, Yb/Ho)-doped Ba 2 GdF 7 multifunctional nanophosphors [J]. New J. Chem. , 2017 , 41 ( 4 ): 1609 - 1617 .
FENG Y , XIAO Q , ZHANG Y , et al . . Neodymium-doped NaHoF 4 nanoparticles as near-infrared luminescent/ T 2 -weighted MR dual-modal imaging agents in vivo [J]. J. Mater. Chem. B , 2017 , 5 ( 3 ): 504 - 510 .
NI D , BU W , ZHANG S , et al . . Single Ho 3+ -Doped upconversion nanoparticles for high-performance T 2 -weighted brain tumor diagnosis and MR/UCL/CT multimodal imaging [J]. Adv. Funct. Mater. , 2014 , 24 ( 42 ): 6613 - 6620 .
NOREK M , KAMPERT E , ZEITLER U , et al . . Tuning of the size of Dy 2 O 3 nanoparticles for optimal performance as an MRI contrast agent [J]. J. Am. Chem. Soc. , 2008 , 130 ( 15 ): 5335 - 5340 .
KATTEL K , PARK J Y , XU W , et al . . Paramagnetic dysprosium oxide nanoparticles and dysprosium hydroxide nanorods as T 2 MRI contrast agents [J]. Biomaterials , 2012 , 33 ( 11 ): 3254 - 3261 .
NOREK M , PEREIRA G A , GERALDES C F , et al . . NMR transversal relaxivity of suspensions of lanthanide oxide nanoparticles [J]. J. Phys. Chem. C , 2007 , 111 ( 28 ): 10240 - 10246 .
DAS G K , ZHANG Y , D'SILVA L , et al . . Single-phase Dy 2 O 3 ∶Tb 3+ nanocrystals as dual-modal contrast agent for high field magnetic resonance and optical imaging [J]. Chem. Mater. , 2011 , 23 ( 9 ): 2439 - 2446 .
ZHANG X , BLASIAK B , MARENCO A J , et al . . Design and regulation of NaHoF 4 and NaDyF 4 nanoparticles for high-field magnetic resonance imaging [J]. Chem. Mater. , 2016 , 28 ( 9 ): 3060 - 3072 .
ARSALANI N , FATTAHI H , NAZARPOOR M . Synthesis and characterization of PVP-functionalized superparamagnetic Fe 3 O 4 nanoparticles as an MRI contrast agent [J]. Express Polym. Lett. , 2010 , 4 ( 6 ): 329 - 338 .
ZHANG Y , LIU J Y , MA S , et al . . Synthesis of PVP-coated ultra-small Fe 3 O 4 nanoparticles as a MRI contrast agent [J]. J. Mater. Sci. : Mater. Med. , 2010 , 21 ( 4 ): 1205 - 1210 .
ZENG J , JING L , HOU Y , et al . . Anchoring group effects of surface ligands on magnetic properties of Fe 3 O 4 nanoparticles: towards high performance MRI contrast agents [J]. Adv. Mater. , 2014 , 26 ( 17 ): 2694 - 2698 .
HU F , WEI L , ZHOU Z , et al . . Preparation of biocompatible magnetite nanocrystals for in vivo magnetic resonance detection of cancer [J]. Adv. Mater. , 2006 , 18 ( 19 ): 2553 - 2556 .
WANG C , CHEN J , TALAVAGE T , et al . . Gold nanorod/Fe 3 O 4 nanoparticle “nano-pearl-necklaces” for simultaneous targeting, dual-mode imaging, and photothermal ablation of cancer cells [J]. Angew. Chem. Int. Ed. , 2009 , 48 ( 15 ): 2759 - 2763 .
CHEN F , BU W , CHEN Y , et al . . A sub-50-nm monosized superparamagnetic Fe 3 O 4 @SiO 2 T 2 -weighted MRI contrast agent: highly reproducible synthesis of uniform single-loaded core-shell nanostructures [J]. Chem. An Asian J. , 2009 , 4 ( 12 ): 1809 - 1816 .
CHEN F , BU W , LU C , et al . . Hydrothermal synthesis of a highly sensitive T 2 -weigthed MRI contrast agent: zinc-doped superparamagnetic iron oxide nanocrystals [J]. J. Nanosci. Nanotechnol. , 2011 , 11 ( 12 ): 10438 - 10443 .
XIE J , CHEN K , LEE H Y , et al . . Ultrasmall c (RGDyK)-coated Fe 3 O 4 nanoparticles and their specific targeting to integrin α v β 3 -rich tumor cells [J]. J. Am. Chem. Soc. , 2008 , 130 ( 24 ): 7542 - 7543 .
TIAN Q , HU J , ZHU Y , et al . . Sub-10 nm Fe 3 O 4 @Cu 2- x S core-shell nanoparticles for dual-modal imaging and photothermal therapy [J]. J. Am. Chem. Soc. , 2013 , 135 ( 23 ): 8571 - 8577 .
YANG H , ZHUANG Y , SUN Y , et al . . Targeted dual-contrast T 1 -and T 2 -weighted magnetic resonance imaging of tumors using multifunctional gadolinium-labeled superparamagnetic iron oxide nanoparticles [J]. Biomaterials , 2011 , 32 ( 20 ): 4584 - 4593 .
PANKHURST Q A , CONNOLLY J , JONES S K , et al . . Applications of magnetic nanoparticles in biomedicine [J]. J. Phys. D , 2003 , 36 ( 13 ): R167 - R181 .
FY C , CH S , YS Y , et al . . Characterization of aqueous dispersions of Fe 3 O 4 nanoparticles and their biomedical applications [J]. Biomaterials , 2005 , 26 ( 7 ): 729 .
ZENG H , LI J , WANG Z L , et al . . Bimagnetic core/shell FePt/Fe 3 O 4 nanoparticles [J]. Nano Lett. , 2015 , 4 ( 1 ): 187 - 190 .
XIE J , XU C , KOHLER N , et al . . Controlled PEGylation of monodisperse Fe 3 O 4 nanoparticles for reduced non-specific uptake by macrophage cells [J]. Adv. Mater. , 2007 , 19 ( 20 ): 3163 - 3166 .
ZHU X , ZHOU J , CHEN M , et al . . Core-shell Fe 3 O 4 @NaLuF 4 ∶Yb,Er/Tm nanostructure for MRI, CT and upconversion luminescence tri-modality imaging [J]. Biomaterials , 2012 , 33 ( 18 ): 4618 - 4627 .
CHEN F , ZHANG S , BU W , et al . . A “neck-formation” strategy for an antiquenching magnetic/upconversion fluorescent bimodal cancer probe [J]. Chem. A Eur. J. , 2010 , 16 ( 37 ): 11254 - 11260 .
CHEN F , BU W , ZHANG L , et al . . Is black iron oxide nanoparticle always a light absorber? [J]. J. Mater. Chem. , 2011 , 21 ( 22 ): 7990 - 7995 .
FENG L , DAN Y , FEI H , et al . . A core-shell-satellite structured Fe 3 O 4 @g-C 3 N 4 -UCNPs-PEG for T 1 / T 2 -weighted dual-modal MRI-guided photodynamic therapy [J]. Adv. Healthcare Mater. , 2017 , 32 ( 5 ): 1265 - 1271 .
LIU J N , BU W B , SHI J L . Silica coated upconversion nanoparticles: a versatile platform for the development of efficient theranostics [J]. ACC Chem. Res. , 2015 , 48 ( 7 ): 1797 - 1805 .
LIU F , ZHAO Q , YOU H , et al . . Synthesis of stable carboxy-terminated NaYF 4 ∶Yb 3+ ,Er 3+ @SiO 2 nanoparticles with ultrathin shell for biolabeling applications [J]. Nanoscale , 2013 , 5 ( 3 ): 1047 - 1053 .
XIA A , CHEN M , GAO Y , et al . . Gd 3+ complex-modified NaLuF 4 -based upconversion nanophosphors for trimodality imaging of NIR-to-NIR upconversion luminescence, X-ray computed tomography and magnetic resonance [J]. Biomaterials , 2012 , 33 ( 21 ): 5394 - 5405 .
CHEN Y Y , MA P A , YANG D M , et al . . Multifunctional core-shell structured nanocarriers for synchronous tumor diagnosis and treatment in vivo [J]. Chem. An Asian J. , 2014 , 9 ( 2 ): 506 - 513 .
HAN R , SHI J , LIU Z , et al . . Fabrication of mesoporous silica-coated upconverting nanoparticles with ultrafast photosensitizer loading and 808 nm NIR light triggering capability for photodynamic therapy [J]. Chem. An Asian J. , 2017 , 12 ( 3 ): 613 - 621 .
XU Y , LI H , MENG X , et al . . Rhodamine-modified upconversion nanoprobe for distinguishing Cu 2+ from Hg 2+ and live cell imaging [J]. New J. Chem. , 2016 , 40 ( 4 ): 3543 - 3551 .
ZHAO L , PENG J , CHEN M , et al . . Yolk-shell upconversion nanocomposites for LRET sensing of cysteine/homocysteine [J]. ACS Appl. Mater. Interf. , 2014 , 6 ( 14 ): 11190 - 11197 .
何璐 . 多层双聚合物修饰的稀土上转换发光纳米材料用于多模态成像及血清存在下提高转染效率的研究 [D]. 苏州 : 苏州大学 , 2014 .
HE L . Multilayered Double Polymer Modified Up Conversion Luminescent Nanomaterials for Multimodal Imaging and The Improvement of Transfection Efficiency in The Presence of Serum [D]. Suzhou : Suzhou University , 2014 . ( in Chinese )
WANG C , CHENG L , LIU Y , et al . . Biomedical applications: imaging-guided pH-sensitive photodynamic therapy using charge reversible upconversion nanoparticles under near-infrared light [J]. Adv. Funct. Mater. , 2013 , 23 ( 24 ): 3077 - 3086 .
王欣 . 稀土上转换发光纳米材料用于近红外光激发的光动力治疗联合肿瘤基因治疗的研究 [D]. 苏州 : 苏州大学 , 2015 .
WANG X . Study of Rare - earth Upconversion Luminescent Nanomaterials for Photodynamic Therapy Combined with Tumor Gene Therapy Excited by Near Infrared Light [D]. Suzhou : Suzhou University , 2015 . ( in Chinese )
LIU F , HE X , LEI Z , et al . . Cancer theranostics: facile preparation of doxorubicin-loaded upconversion@polydopamine nanoplatforms for simultaneous in vivo multimodality imaging and chemophotothermal synergistic therapy [J]. Adv. Healthcare Mater. , 2015 , 4 ( 4 ): 559 .
LIU B , LI C , XING B , et al . . Multifunctional UCNPs@PDA-ICG nanocomposites for upconversion imaging and combined photothermal/photodynamic therapy with enhanced antitumor efficacy [J]. J. Mater. Chem. B , 2016 , 4 ( 28 ): 1232 - 1238 .
李颖 . 多功能稀土上转换发光纳米材料的合成及生物成像应用 [D]. 上海 : 上海师范大学 , 2016 .
LI Y . Synthesis and Bioimaging Application of Multifunction Rare Earth Upconversion Luminescent Nanomaterials [D]. Shanghai : Shanghai Normal University , 2016 . ( in Chinese )
LIU Y , CHEN M , CAO T , et al . . A cyanine-modified nanosystem for in vivo upconversion luminescence bioimaging of methylmercury [J]. J. Am. Chem. Soc. , 2013 , 135 ( 26 ): 9869 - 9876 .
GAI S , LI C , YANG P , et al . . Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications [J]. Chem. Rev. , 2013 , 114 ( 4 ): 2343 - 2389 .
CHEN G , ÅGREN H , OHULCHANSKYY T Y , et al . . Light upconverting core-shell nanostructures: nanophotonic control for emerging applications [J]. Chem. Soc. Rev. , 2015 , 44 ( 6 ): 1680 - 1713 .
SUN L D , WANG Y F , YAN C H . Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: small size and tunable emission/excitation spectra [J]. ACC Chem. Res. , 2014 , 47 ( 4 ): 1001 - 1009 .
LI W , ZHAO D . Extension of the Stöber method to construct mesoporous SiO 2 and TiO 2 shells for uniform multifunctional core-shell structures [J]. Adv. Mater. , 2013 , 25 ( 1 ): 142 - 149 .
ZHANG F , BRAUN G B , SHI Y , et al . . . Fabrication of Ag@SiO 2 @Y 2 O 3 ∶Er nanostructures for bioimaging: tuning of the upconversion fluorescence with silver nanoparticles [J]. J. Am. Chem. Soc. , 2010 , 132 ( 9 ): 2850 - 2851 .
ZHANG S , WEN L , YANG J , et al . . Facile fabrication of dendritic mesoporous SiO 2 @CdTe@SiO 2 fluorescent nanoparticles for bioimaging [J]. Particle Particle Systems Charact. , 2016 , 33 ( 5 ): 261 - 270 .
CHEN F , BU W , CHEN Y , et al . . A sub-50-nm monosized superparamagnetic Fe 3 O 4 @SiO 2 T 2 -weighted MRI contrast agent: highly reproducible synthesis of uniform single-loaded core-shell nanostructures [J]. Chem. Asian J. , 2009 , 4 ( 12 ): 1809 .
CHEN Y , CHEN H , MA M , et al . . Double mesoporous silica shelled spherical/ellipsoidal nanostructures: synthesis and hydrophilic/hydrophobic anticancer drug delivery [J]. J. Mater. Chem. , 2011 , 21 ( 14 ): 5290 - 5298 .
MA J , HUANG P , HE M , et al . . Folic acid-conjugated LaF 3 ∶Yb, Tm@ SiO 2 nanoprobes for targeting dual-modality imaging of upconversion luminescence and X-ray computed tomography [J]. J. Phys. Chem. B , 2012 , 116 ( 48 ): 14062 - 14070 .
WANG F , ZHAI D , WU C , et al . . Multifunctional mesoporous bioactive glass/upconversion nanoparticle nanocomposites with strong red emission to monitor drug delivery and stimulate osteogenic differentiation of stem cells [J]. Nano Res. , 2016 , 9 ( 4 ): 1193 - 1208 .
陈颖 , 李菲菲 , 李春光 , 等 . 稀土上转换发光材料标记抗体的制备及在免疫组化中的应用 [J]. 高等学校化学学报 , 2013 , 34 ( 4 ): 788 - 793 .
CHEN Y , LI F F , LI C G , et al . . Preparation and application of rare-earth up-conversion luminescent material labeled antibody and its application in immunohistochemistry [J]. Chem. J. Chin. Univ. , 2013 , 34 ( 4 ): 788 - 793 . ( in Chinese )
丁晓英 , 范慧俐 , 徐晓伟 , 等 . SiO 2 包覆上转换发光材料NaY 0.57 Yb 0.39 E r 0.04 F 4 的研究 [J]. 发光学报 , 2006 , 27 ( 3 ): 353 - 357 .
DING H Y , FAN H L , XU X W , et al . . Study on NaY 0.57 Yb 0.39 E r 0.04 F 4 of SiO 2 coated upconversion luminescent material [J]. Chin. J. Lumin. , 2006 , 27 ( 3 ): 353 - 357 . ( in Chinese )
YANG C , LIU Q , HE D , et al . . Dual-modal imaging and photodynamic therapy using upconversion nanoparticles for tumor cells [J]. Analyst , 2014 , 139 ( 24 ): 6414 - 6420 .
CHEN F , BU W , ZHANG S , et al . . Gd 3+ -ion-doped upconversion nanoprobes: relaxivity mechanism probing and sensitivity optimization [J]. Adv. Funct. Mater. , 2013 , 23 ( 3 ): 298 - 307 .
ZHANG C , BU W , NI D , et al . . A polyoxometalate cluster paradigm with self-adaptive electronic structure for acidity/reducibility-specific photothermal conversion [J]. J. Am. Chem. Soc. , 2016 , 138 ( 26 ): 8156 - 8164 .
ZHANG C , BU W , NI D , et al . . Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized Fenton reaction [J]. Angew. Chem. , 2016 , 128 ( 6 ): 2141 - 2146 .
LI P , LIU L , ZHOU J , et al . . pH-sensitive polymer functionalized upconversion nanoparticles (UCNPs) as biomarkers [J]. J. Control. Release , 2017 , 259 : e106 .
LIU B , DENG X , XIE Z , et al . . Thiol-ene click reaction as a facile and general approach for surface functionalization of colloidal nanocrystals [J]. Adv. Mater. , 2017 , 29 ( 36 ): 1604878 .
XIE Z , DENG X , LIU B , et al . . Construction of hierarchical polymer brushes on upconversion nanoparticles via NIR-light-initiated RAFT polymerization [J]. ACS Appl. Mater. Interf. , 2017 , 9 ( 36 ): 30414 .
ZHANG Q , SONG K , ZHAO J , et al . . Hexanedioic acid mediated surface-ligand-exchange process for transferring NaYF 4 ∶Yb/Er (or Yb/Tm) up-converting nanoparticles from hydrophobic to hydrophilic [J]. J . Colloid Interf. Sci. , 2009 , 336 ( 1 ): 17117 - 17125 .
YI G S , CHOW G M . Synthesis of hexagonal-phase NaYF 4 ∶Yb, Er and NaYF 4 ∶Yb, Tm nanocrystals with efficient up-conversion fluorescence [J]. Adv. Funct. Mater. , 2006 , 16 ( 18 ): 2324 - 2329 .
WANG L , YAN R , HUO Z , et al . . Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles [J]. Angew. Chem. Int. Ed. Engl. , 2005 , 44 ( 37 ): 6054 .
CHEN Z , CHEN H , HU H , et al . . Versatile synthesis strategy for carboxylic acid-unctionalized upconverting nanophosphors as biological labels [J]. J. Am. Chem. Soc. , 2008 , 130 ( 10 ): 3023 - 3029 .
HU H , YU M , LI F , et al . . Facile epoxidation strategy for producing amphiphilic up-converting rare-earth nanophosphors as biological labels [J]. Chem. Mater. , 2008 , 20 ( 22 ): 7003 - 7009 .
ZHENG X Y , ZHAO K , TANG J , et al . . Gd-dots with strong ligand-water interaction for ultrasensitive magnetic resonance renography [J]. ACS Nano , 2017 , 11 ( 4 ): 3642 - 3650 .
ZHOU J , LIU Z , LI F . Upconversion nanophosphors for small-animal imaging [J]. Chem. Soc. Rev. , 2012 , 41 ( 3 ): 1323 .
LIU J , CHENG J , ZHANG Y . Upconversion nanoparticle based LRET system for sensitive detection of MRSA DNA sequence [J]. Biosens. Bioelectron. , 2013 , 43 ( 1 ): 252 .
WANG F , BANERJEE D , LIU Y , et al . . Upconversion nanoparticles in biological labeling, imaging, and therapy [J]. Analyst , 2010 , 135 ( 8 ): 1839 - 1854 .
WANG C , CHENG L , LIU Z . Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy [J]. Biomaterials , 2011 , 32 ( 4 ): 1110 .
GU Z , YAN L , TIAN G , et al . . Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications [J]. Adv. Mater. , 2013 , 25 ( 28 ): 3758 - 3779 .
JIANG S , ZHANG Y . Use of IR-to-visible upconversion fluorescent nanoparticles for tracking of siRNA delivery [C]. Proceedings of The Sixth IASTED International Conference on Biomedical Engineering , Innsbruck, Austria , 2008 : 368 - 371 .
IDRIS N M , GNANASAMMANDHAN M K , ZHANG J , et al . . In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers [J]. Nat. Med. , 2012 , 18 ( 10 ): 1580 - 1585 .
LI Z , LIANG T , LV S , et al . . A rationally designed upconversion nanoprobe for in vivo detection of hydroxyl radical [J]. J. Am. Chem. Soc. , 2015 , 137 ( 34 ): 11179 - 11185 .
WANG C , CHENG L , LIU Z . Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics [J]. Theranostics , 2013 , 3 ( 5 ): 317 - 330 .
CHEN Z , ZHEN L , LI Z , et al . . Upconversion nanoprobes for efficiently in vitro imaging reactive oxygen species and in vivo diagnosing rheumatoid arthritis [J]. Biomaterials , 2015 , 39 : 15 - 22 .
ZHOU L , CHEN Z , DONG K , et al . . DNA-mediated construction of hollow upconversion nanoparticles for protein harvesting and near-infrared light triggered release [J]. Adv. Mater. , 2014 , 26 ( 15 ): 2424 - 2430 .
DING X , LIU J , LIU D , et al . . Multifunctional core/satellite polydopamine@Nd 3+ -sensitized upconversion nanocomposite: a single 808 nm near-infrared light-triggered theranostic platform for in vivo imaging-guided photothermal therapy [J]. Nano Res. , 2017 , 10 ( 10 ): 3434 - 3446 .
BASSER P J , PIERPAOLI C . Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI [J]. J. Magn. Reson. , 2011 , 213 ( 2 ): 560 .
CLIFFORD R J , RONALD C P , YUE C X , et al . . Medial temporal atrophy on MRI in normal aging and very mild Alzheimer's disease [J]. Neurology , 1997 , 49 ( 3 ): 786 - 794 .
LIU J , BU J , BU W , et al . . Real-time in vivo quantitative monitoring of drug release by dual-mode magnetic resonance and upconverted luminescence imaging [J]. Angew. Chem. Int. Ed. , 2014 , 53 ( 18 ): 4551 - 4555 .
LI Y , TANG J , HE L , et al . . Core-shell upconversion nanoparticle@metal-organic framework nanoprobes for luminescent/magnetic dual-mode targeted imaging [J]. Adv. Mater. , 2015 , 27 ( 27 ): 4075 - 4080 .
SUN Y , ZHU X , PENG J , et al . . Core-shell lanthanide upconversion nanophosphors as four-modal probes for tumor angiogenesis imaging [J]. ACS Nano , 2013 , 7 ( 12 ): 11290 - 11300 .
LIU Y , KANG N , LV J , et al . . Deep photoacoustic/luminescence/magnetic resonance multimodal imaging in living subjects using high-efficiency upconversion nanocomposites [J]. Adv. Mater. , 2016 , 28 ( 30 ): 6411 - 6419 .
ZHAO Z , HAN Y , LIN C , et al . . Multifunctional core-shell upconverting nanoparticles for imaging and photodynamic therapy of liver cancer cells [J]. Chem. An Asian J. , 2012 , 7 ( 4 ): 830 - 837 .
GUAN M , DONG H , GE J , et al . . Multifunctional upconversion-nanoparticles-trismethylpyridylporphyrin-fullerene nanocomposite: a near-infrared light-triggered theranostic platform for imaging-guided photodynamic therapy [J]. NPG Asia Mater. , 2015 , 7 : e205 .
WANG C , CHENG L , LIU Y , et al . . Imaging-guided pH-sensitive photodynamic therapy using charge reversible upconversion nanoparticles under near-infrared light [J]. Adv. Funct. Mater. , 2013 , 23 ( 24 ): 3077 - 3086 .
CHENG L , YANG K , LI Y , et al . . Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy [J]. Biomaterials , 2012 , 33 ( 7 ): 2215 - 2222 .
GE W , CHEN T , LI Z , et al . . Plasmonic-enhanced and Nd 3+ -sensitized upconversion nanoparticles for magnetically targeted MRI/UCL dual-mode imaging and photothermal therapy [J]. Nanosci. Nanotechnol. Lett. , 2017 , 9 ( 4 ): 416 - 424 .
CHEN Q , WEN J , LI H , et al . . Recent advances in different modal imaging-guided photothermal therapy [J]. Biomaterials , 2016 , 106 : 144 - 166 .
XIAO Q , ZHENG X , BU W , et al . . A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy [J]. J. Am. Chem. Soc. , 2013 , 135 ( 35 ): 13041 - 13048 .
FAN W , SHEN B , BU W , et al . . Rattle-structured multifunctional nanotheranostics for synergetic chemo-/radiotherapy and simultaneous magnetic/luminescent dual-mode imaging [J]. J. Am. Chem. Soc. , 2013 , 135 ( 17 ): 6494 - 6503 .
LIU F , HE X , LEI Z , et al . . Facile preparation of doxorubicin-loaded upconversion@polydopamine nanoplatforms for simultaneous in vivo multimodality imaging and chemophotothermal synergistic therapy [J]. Adv. Healthcare Mater. , 2015 , 4 ( 4 ): 559 - 568 .
DAI Y , XIAO H , LIU J , et al . . In vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum pro-drug-conjugated upconverison nanoparticles [J]. J. Am. Chem. Soc. , 2013 , 135 ( 50 ): 18920 - 18929 .
CHENG L , YANG K , LI Y , et al . . Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy [J]. Angew. Chem. , 2011 , 123 ( 32 ): 7523 - 7528 .
LIU Y , ZHANG J , ZUO C , et al . . Upconversion nano-photosensitizer targeting into mitochondria for cancer apoptosis induction and cytc fluorescence monitoring [J]. Nano Res. , 2016 , 9 ( 11 ): 3257 - 3266 .
LIU Y , LIU Y , BU W , et al . . Hypoxia induced by upconversion-based photodynamic therapy: towards highly effective synergistic bioreductive therapy in tumors [J]. Angew. Chem. Int. Ed. , 2015 , 54 ( 28 ): 8105810 .
LIU X , ZHENG M , KONG X , et al . . Separately doped upconversion-C60 nanoplatform for NIR imaging-guided photodynamic therapy of cancer cells [J]. Chem. Commun. , 2013 , 49 ( 31 ): 3224 - 3226 .
WANG C , CHENG L , LIU Z . Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics [J]. Theranostics , 2013 , 3 ( 5 ): 317 .
SUN M , XU L , MA W , et al . . Hierarchical plasmonic nanorods and upconversion core-satellite nanoassemblies for multimodal imaging-guided combination phototherapy [J]. Adv. Mater. , 2016 , 28 ( 5 ): 898 - 904 .
ALVAREZ-LORENZO C , BROMBERG L , CONCHEIRO A . Light-sensitive intelligent drug delivery systems [J]. Photochem. Photobiol. , 2009 , 85 ( 4 ): 848 - 860 .
CHITHRANI D B , JELVEH S , JALALI F , et al . . Gold nanoparticles as radiation sensitizers in cancer therapy [J]. Radiat. Res. , 2010 , 173 ( 6 ): 719 - 728 .
KOBAYASHI K , USAMI N , PORCEL E , et al . . Enhancement of radiation effect by heavy elements [J]. Mutat. Res. / Rev. Mutation Res. , 2010 , 704 ( 1 ): 123 - 131 .
LU Y , XU Y J , ZHANG G B , et al . . Iron oxide nanoclusters for T 1 magnetic resonance imaging of non-human primates [J]. Nat. Biomed. Eng. , 2017 , 1 ( 8 ): 637 .
王小玲 , 赵振华 , 王伯胤 , 等 . MRI功能成像对肝动脉化疗栓塞治疗肝细胞肝癌的疗效评价 [J]. 临床放射学杂志 , 2017 ( 5 ): 700 - 704 .
WANG X L , ZHAO Z H , WANG B Y , et al . . Evaluation of MRI functional imaging for hepatic arterial chemoembolization in the treatment of hepatocellular carcinoma [J]. J. Clin. Radiol. , 2017 ( 5 ): 700 - 704 . ( in Chinese )
袁红梅 , 余建群 . MRI功能成像在乳腺良恶性肿瘤诊断中的应用 [J]. 生物医学工程学杂志 , 2009 ( 2 ): 421 - 424 .
YUAN H M , YU J Q . The application of MRI functional imaging in the diagnosis of benign and malignant breast tumors [J]. Biomed. Eng. J. , 2009 ( 2 ): 421 - 424 . ( in Chinese )
岳倩倩 , 王新怡 . MRI功能成像在小肝癌诊断中的应用进展 [J]. 中华消化病与影像杂志(电子版) , 2016 ( 4 ): 180 - 183 .
YUE Q Q , WANG X Y . Progress in the application of MRI functional imaging in the diagnosis of small hepatocellular carcinoma [J]. Chin. J. Digest. Imaging ( Electron. Ed. ), 2016 ( 4 ): 180 - 183 . ( in Chinese )
NI D , SHEN Z , ZHANG J , et al . . Integrating anatomic and functional dual-mode magnetic resonance imaging: design and applicability of a bifunctional contrast agent [J]. ACS Nano , 2016 , 10 ( 3 ): 3783 - 3790 .
ZHANG C , ZHAO K , BU W , et al . . Marriage of scintillator and semiconductor for synchronous radiotherapy and deep photodynamic therapy with diminished oxygen dependence [J]. Angew. Chem.Int. Ed. , 2015 , 54 ( 6 ): 1770 - 1774 .
0
Views
90
下载量
4
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution