浏览全部资源
扫码关注微信
复旦大学化学系 高分子工程国家重点实验室, 上海 200433
[ "王睿(1991-),男,江西上饶人,博士,2017年于复旦大学获得博士学位,主要从事生物活体成像与生物传感方面的研究。E-mail:rwang938@gmail.com" ]
[ "张凡(1977-),男,内蒙古呼和浩特人,教授,博士生导师,2008年于复旦大学获得博士学位,主要从事光学成像分析方面的研究。E-mail:zhang_fan@fudan. edu.cn" ]
Received:23 October 2017,
Revised:09 December 2017,
Published:2018-01
移动端阅览
Rui WANG, Fan ZHANG. Synthesis of Highly Efficient Lanthanide Upconversion Nanoparticles[J]. 发光学报, 2018, 39(1): 50-68.
Rui WANG, Fan ZHANG. Synthesis of Highly Efficient Lanthanide Upconversion Nanoparticles[J]. 发光学报, 2018, 39(1): 50-68. DOI: 10.3788/fgxb20183901.0050.
上转换纳米粒子在近红外光激发下发射紫外/可见/近红外光
也称为反斯托克斯发射。这一独特的光学性质排除了来自于生物材料的背景荧光和散射光
为光学生物应用
如生物成像、光动力学治疗、药物输送等开辟了新的途径。为了实现更好的应用性能
在许多情况下需要高效率的镧系元素上转换纳米颗粒。一般来说
上转换纳米粒子的质量往往与其合成方法有关。在这篇综述中
我们将主要阐述上转换纳米粒子的各种合成过程
总结了几种获得高发光效率的上转换纳米粒子的有效途径。
Upconversion nanoparticles can emit ultraviolet/visible/near-infrared light under near-infrared excitation
also known as anti-Stokes emission. This unique optical property precludes background fluorescence and light scattering from biological materials
which opens up new avenues for optical bio-applications
such as bioimaging
photodynamic treatment
drug delivery
etc.
In order to achieve better application performance
highly efficient lanthanide upconversion nanoparticles is desired in many cases. Generally
the quality of the upconversion nanoparticles is always related to their synthetic methods. In this review
we will focus primarily on the various synthetic procedures for the upconversion nanoparticles. Moreover
several effective ways to obtain high luminescence efficiency are summarized.
AUZEL F. Upconversion and anti-Stokes processes with f and d ions in solids [J]. Chem. Rev. , 2004 , 104 ( 1 ): 139 - 173 .
ESTEROWI L , SCHNITZL. A , NOONAN J , et al. . Rare earth infrared quantum counter [J]. Appl. Opt. , 1968 , 7 ( 10 ): 2053 - 2070 .
LIU S T , MACIOLEK R B. Rare-earth-modified Sr 1- x Ba x Nb 2 O 6 ferroelectric-crystals and their applications as infrared detectors [J]. J. Electron. Mater. , 1974 , 3 ( 4 ): 864 .
MACIEL G S , MENEZES L D , GOMES A S L , et al. . Temperature sensor based on frequency upconversion in Er 3+ -doped fluoroindate glass [J]. IEEE Photon. Technol. Lett. , 1995 , 7 ( 12 ): 1474 - 1476 .
BERTHOU H , JORGENSEN C K. Optical-fiber temperature sensor based on upconversion-excited fluorescence [J]. Opt. Lett. , 1990 , 15 ( 19 ): 1100 - 1102 .
DOWNING E , HESSELINK L , RALSTON J , et al. . A three-color, solid-state, three-dimensional display [J]. Science , 1996 , 273 ( 5279 ): 1185 - 1189 .
JOUBERT M F. Photon avalanche upconversion in rare earth laser materials [J]. Opt. Mater. , 1999 , 11 ( 2-3 ): 181 - 203 .
STONEMAN R C , ESTEROWITZ L. Efficient resonantly pumped 2.8-μm Er 3+ GSGG laser [J]. Opt. Lett. , 1992 , 17 ( 11 ): 816 - 818 .
HUTCHINSON J A , ALLIK T H. Diode array-pumped Er, Yb-phosphate-glass laser [J]. Appl. Phys. Lett. , 1992 , 60 ( 12 ): 1424 - 1426 .
PACHECO E M , DEARAUJO C B. Frequency upconversion in a borate glass doped with Pr 3+ [J]. Chem. Phys. Lett. , 1988 , 148 ( 4 ): 334 - 336 .
CHAMARRO M A , CASES R. Energy upconversion in (Yb, Ho) and (Yb, Tm) doped fluorohafnate glasses [J]. J. Lumin. , 1988 , 42 ( 5 ): 267 - 274 .
QUIMBY R S , DREXHAGE M G , SUSCAVAGE M J. Efficient frequency upconversion via energy-transfer in fluoride glasses [J]. Electron. Lett ,. 1987 , 23 ( 1 ): 32 - 34 .
YEH D C , SIBLEY W A , SUSCAVAGE M J. Efficient frequency upconversion of Tm 3+ ions in Yb 3+ doped barium thorium fluoride glass [J]. J. Appl. Phys. , 1988 , 63 ( 9 ): 4644 - 4650 .
ELISEEVA S V , BUNZLI J C G. Lanthanide luminescence for functional materials and bio-sciences [J]. Chem. Soc. Rev. , 2010 , 39 ( 1 ): 189 - 227 .
KOBAYASHI H , OGAWA M , ALFORD R , et al. . New strategies for fluorescent probe design in medical diagnostic imaging [J]. Chem. Rev. , 2010 , 110 ( 5 ): 2620 - 2640 .
MADER H S , KELE P , SALEH S M , et al. . Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging [J]. Curr. Opin. Chem. Biol. , 2010 , 14 ( 5 ): 582 - 596 .
CHENG L , YANG K , LI Y G , et al. . Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy [J]. Angew. Chem. Int. Ed. , 2011 , 50 ( 32 ): 7385 - 7390 .
ZHANG F , SHI Y , SUN X , et al. . Formation of hollow upconversion rare-earth fluoride nanospheres: nanoscale kirkendall effect during ion exchange [J]. Chem. Mater. , 2009 , 21 ( 21 ): 5237 - 5243 .
BOYER J C , MANSEAU M P , MURRAY J I , et al. . Surface modification of upconverting NaYF 4 nanoparticles with PEG-phosphate ligands for NIR (800 nm) biolabeling within the biological window [J]. Langmuir , 2010 , 26 ( 2 ): 1157 - 1164 .
HEBBINK G A , STOUWDAM J W , REINHOUDT D N , et al. . Lanthanide (Ⅲ-doped nanoparticles that emit in the nearinfrared [J]. Adv. Mater. , 2002 , 14 ( 16 ): 1147 - 1150 .
WANG F , HAN Y , LIM C S , et al. . Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping [J]. Nature. 2010 , 463 ( 7284 ): 1061 - 1065 .
WANG F , DENG R R , WANG J , et al. . Tuning upconversion through energy migration in core-shell nanoparticles [J]. Nat. Mater. , 2011 , 10 ( 12 ): 968 - 973 .
WANG F , WANG J , LIU X. Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles [J]. Angew. Chem. Int. Ed. , 2010 , 49 ( 41 ): 7456 - 7460 .
HUANG P , ZHENG W , ZHOU S , et al. . Lanthanide-doped LiLuF 4 upconversion nanoprobes for the detection of disease biomarkers [J]. Angew. Chem. Int. Ed. , 2014 , 53 ( 5 ): 1252 - 1257 .
LIU Q , SUN Y , YANG T , et al. . Sub-10 nm hexagonal lanthanide-doped NaLuF 4 upconversion nanocrystals for sensitive bioimaging in vivo [J]. J. Am. Chem. Soc. , 2011 , 133 ( 43 ): 17122 - 17125 .
ZHANG Y W , SUN X , SI R , et al. . Single-crystalline and monodisperse LaF 3 triangular nanoplates from a single-source precursor [J]. J. Am. Chem. Soc. , 2005 , 127 ( 10 ): 3260 - 3261 .
ZHENG W , ZHOU S , CHEN Z , et al. . Sub-10 nm lanthanide-doped CaF 2 nanoprobes for time-resolved luminescent biodetection [J]. Angew. Chem. Int. Ed. , 2013 , 52 ( 26 ): 6671 - 6676 .
WANG F , LIU X G. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals [J]. Chem. Soc. Rev. , 2009 , 38 ( 4 ): 976 - 989 .
CHENG L , WANG C , LIU Z. Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy [J]. Nanoscale , 2013 , 5 ( 1 ): 23 - 37 .
WANG F , BANERJEE D , LIU Y , et al. . Upconversion nanoparticles in biological labeling, imaging, and therapy [J]. Analyst , 2010 , 135 ( 8 ): 1839 - 1854 .
ZHOU J , LIU Z , LI F. Upconversion nanophosphors for small-animal imaging [J]. Chem. Soc. Rev. , 2012 , 41 ( 3 ): 1323 - 1349 .
STOUWDAM J W , VAN VEGGEL F C. Near-infrared emission of redispersible Er 3+ , Nd 3+ , and Ho 3+ doped LaF 3 nanoparticles [J]. Nano Lett. , 2002 , 2 ( 7 ): 733 - 737 .
YI G S , CHOW G M. Colloidal LaF 3 ∶Yb, Er, LaF 3 ∶Yb, Ho and LaF 3 ∶Yb, Tm nanocrystals with multicolor upconversion fluorescence [J]. J. Mater. Chem. , 2005 , 15 ( 41 ): 4460 - 4464 .
ZENG J H , SU J , LI Z H , et al. . Synthesis and upconversion luminescence of hexagonal-phase NaYF 4 ∶Yb, Er 3+ phosphors of controlled size and morphology [J]. Adv. Mater. , 2005 , 17 ( 17 ): 2119 - 2123 .
HEER S , LEHMANN O , HAASE M , et al. . Blue, green, and red upconversion emission from lanthanide-doped LuPO 4 and YbPO 4 nanocrystals in a transparent colloidal solution [J]. Angew. Chem. Int. Ed. , 2003 , 42 ( 27 ): 3179 - 3182 .
WANG F , CHATTERJEE D K , LI Z , et al. . Synthesis of polyethylenimine/NaYF 4 nanoparticles with upconversion fluorescence [J]. Nanotechnology , 2006 , 17 ( 23 ): 5786 - 5791 .
LI Z , ZHANG Y. Monodisperse silica-coated polyvinylpyrrolidone/NaYF 4 nanocrystals with multicolor upconversion fluorescence emission [J]. Angew. Chem. Int. Ed. , 2006 , 45 ( 46 ): 7732 - 7735 .
QIU P , ZHOU N , CHEN H , et al. . Recent advances in lanthanide-doped upconversion nanomaterials: synthesis, nanostructures and surface modification [J]. Nanoscale , 2013 , 5 ( 23 ): 11512 - 11525 .
CHEN X , PENG D , JU Q , et al. . Photon upconversion in core-shell nanoparticles [J]. Chem. Soc. Rev. , 2015 , 44 ( 6 ): 1318 - 1330 .
CHEN G , QIU H , PRASAD P N , et al. . Upconversion nanoparticles: design, nanochemistry, and applications in theranostics [J]. Chem. Rev. , 2014 , 114 ( 10 ): 5161 - 5214 .
DONG H , DU S R , ZHENG X Y , et al. . Lanthanide nanoparticles: from design toward bioimaging and therapy [J]. Chem. Rev. , 2015 , 115 ( 19 ): 10725 - 10815 .
WANG X , ZHUANG J , PENG Q , et al. . A general strategy for nanocrystal synthesis [J]. Nature , 2005 , 437 ( 7055 ): 121 - 124 .
WANG X , ZHUANG J , PENG Q , et al. . Hydrothermal synthesis of rare-earth fluoride nanocrystals [J]. Inorg. Chem. , 2006 , 45 ( 17 ): 6661 - 6665 .
WANG L , LI Y. Controlled synthesis and luminescence of lanthanide doped NaYF 4 nanocrystals [J]. Chem. Mater. , 2007 , 19 ( 4 ): 727 - 734 .
WANG L , LI Y. Na(Y 1.5 Na 0.5 ) F 6 single-crystal nanorods as multicolor luminescent materials [J]. Nano Lett. , 2006 , 6 ( 8 ): 1645 - 1649 .
ZHANG F , WAN Y , YU T , et al. . Uniform nanostructured arrays of sodium rare-earth fluorides for highly efficient multicolor upconversion luminescence [J]. Angew. Chem. Int. Ed. , 2007 , 46 ( 42 ): 7976 - 7979 .
LIU C , CHEN D. Controlled synthesis of hexagon shaped lanthanide-doped LaF 3 nanoplates with multicolor upconversion fluorescence [J]. J. Mater. Chem. , 2007 , 17 ( 37 ): 3875 - 3880 .
TIAN G , GU Z , ZHOU L , et al. . Mn 2+ dopant-controlled synthesis of NaYF 4 ∶Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery [J]. Adv. Mater. , 2012 , 24 ( 9 ): 1226 - 1231 .
ZENG S , YI Z , LU W , et al. . Simultaneous realization of phase/size manipulation, upconversion luminescence enhancement, and blood vessel imaging in multifunctional nanoprobes through transition metal Mn 2+ doping [J]. Adv. Funct. Mater. , 2014 , 24 ( 26 ): 4051 - 4059 .
MAI H X , ZHANG Y W , SI R , et al. . High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties [J]. J. Am. Chem. Soc. , 2006 , 128 ( 19 ): 6426 - 6436 .
BOYER J C , CUCCIA L A , CAPOBIANCO J A. Synthesis of colloidal upconverting NaYF 4 ∶Er 3+ /Yb 3+ and Tm 3+ /Yb 3+ monodisperse nanocrystals [J]. Nano Lett. , 2007 , 7 ( 3 ): 847 - 852 .
MAI H X , ZHANG Y W , SUN L D , et al. Size-and phase-controlled synthesis of monodisperse NaYF 4 ∶Yb, Er nanocrystals from a unique delayed nucleation pathway monitored with upconversion spectroscopy [J]. J. Phys. Chem. C , 2007 , 111 ( 37 ): 13730 - 13739 .
KRÄMER K W , BINER D , FREI G , et al. Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors [J]. Chem. Mater. , 2004 , 16 ( 7 ): 1244 - 1251 .
LI Z Q , ZHANG Y. An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF 4 ∶Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence [J]. Nanotechnology , 2008 , 19 ( 34 ): 345606 .
LI Z Q , ZHANG Y , JIANG S. Multicolor core/shell-structured upconversion fluorescent nanoparticles [J]. Adv. Mater. , 2008 , 20 ( 24 ): 4765 - 4769 .
LAMER V K , DINEGAR R H. Theory, production and mechanism of formation of monodispersed hydrosols [J]. J. Am. Chem. Soc. , 1950 , 72 ( 11 ): 4847 - 4854 .
MURRAY C B , KAGAN C , BAWENDI M. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies [J]. Annu. Rev. Mater. Sci. , 2000 , 30 ( 1 ): 545 - 610 .
PENG Z A , PENG X. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth [J]. J. Am. Chem. Soc. , 2002 , 124 ( 13 ): 3343 - 3353 .
PENG X , WICKHAM J , ALIVISATOS A. Kinetics of Ⅱ-Ⅵ and Ⅲ-Ⅴ colloidal semiconductor nanocrystal growth: “focusing” of size distributions [J]. J. Am. Chem. Soc. , 1998 , 120 ( 21 ): 5343 - 5344 .
DU HNEN S , RINKEL T , HAASE M. Size control of nearly monodisperse β-NaGdF 4 particles prepared from small α-NaG-dF 4 nanocrystals [J]. Chem. Mater. , 2015 , 27 ( 11 ): 4033 - 4039 .
JOHNSON N J , OAKDEN W , STANISZ G J , et al. . Size-tunable, ultrasmall NaGdF 4 nanoparticles: insights into their T1 MRI contrast enhancement [J]. Chem. Mater. , 2011 , 23 ( 16 ): 3714 - 3722 .
LIU D , XU X , DU Y , et al. . Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals [J]. Nat. Commun. , 2016 , 7 : 10254 .
PATRA A , FRIEND C S , KAPOOR R , et al. . Upconversion in Er 3+ ∶ZrO 2 nanocrystals [J]. J. Phys. Chem. B , 2002 , 106 ( 8 ): 1909 - 1912 .
PATRA A , FRIEND C S , KAPOOR R , et al. . Fluorescence upconversion properties of Er 3+ -doped TiO 2 and BaTiO 3 nanocrystallites [J]. Chem. Mater. , 2003 , 15 ( 19 ): 3650 - 3655 .
VENKATRAMU V , FALCOMER D , SPEGHINI A , et al. . Synthesis and luminescence properties of Er 3+ -doped Lu 3 Ga 5 O 12 nanocrystals [J]. J. Lumin. , 2008 , 128 ( 5-6 ): 811 - 813 .
YANG K S , ZHENG F , WU R N , et al. . Upconversion luminescent properties of YVO 4 ∶Yb 3+ , Er 3+ nano-powder by solgel method [J]. J. Rare Earth , 2006 , 24 : 162 - 166 .
XU L , YU Y , LI X , et al. . Synthesis and upconversion properties of monoclinic Gd 2 O 3 ∶Er 3+ nanocrystals [J]. Opt. Mater. , 2008 , 30 ( 8 ): 1284 - 1288 .
LUO X X , CAO W H. Ethanol-assistant solution combustion method to prepare La 2 O 2 S∶Yb, Pr nanometer phosphor [J]. J. Alloys Compd. , 2008 , 460 ( 1 ): 529 - 534 .
VETRONE F , BOYER J C , CAPOBIANCO J A , et al. . Significance of Yb 3+ concentration on the upconversion mechanisms in codoped Y 2 O 3 ∶Er 3+ , Yb 3+ nanocrystals [J]. J. Appl. Phys. , 2004 , 96 ( 1 ): 661 - 667 .
YI G S , CHOW G M. Water-soluble NaYF 4 ∶Yb, Er (Tm) /NaYF 4 /polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence [J]. Chem. Mater. , 2007 , 19 ( 3 ): 341 - 343 .
MAI H X , ZHANG Y W , SUN L D , et al. . Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF 4 ∶Yb, Er core and core/shell-structured nanocrystals [J]. J. Phys. Chem. C , 2007 , 111 ( 37 ): 13721 - 13729 .
BOYER J C , VAN VEGGEL F. Absolute quantum yield measurements of colloidal NaYF 4 ∶Er 3+ , Yb 3+ upconverting nanoparticles [J]. Nanoscale , 2010 , 2 ( 8 ): 1417 - 1419 .
LI X , ZHANG F , ZHAO D. Highly efficient lanthanide upconverting nanomaterials: progresses and challenges [J]. Nano Today , 2013 , 8 ( 6 ): 643 - 676 .
LI X , ZHANG F , ZHAO D. Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure [J]. Chem. Soc. Rev. , 2015 , 44 ( 6 ): 1346 - 1378 .
JOHNSON N J , HE S , DIAO S , et al. . Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals [J]. J. Am. Chem. Soc. , 2017 , 139 ( 8 ): 3275 - 3282 .
ABEL K A , BOYER J C , ANDREI C M , et al. . Analysis of the shell thickness distribution on NaYF 4 /NaGdF 4 core/shell nanocrystals by EELS and EDS [J]. J. Phys. Chem. Lett. , 2011 , 2 ( 3 ): 185 - 189 .
ABEL K A , BOYER J C , VAN VEGGEL F C J M. Hard proof of the NaYF 4 /NaGdF 4 nanocrystal core/shell structure [J]. J. Am. Chem. Soc. , 2009 , 131 ( 41 ): 14644 - 14645 .
ZHANG F , CHE R , LI X , et al. . Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: shell thickness dependence in upconverting optical properties [J]. Nano Lett. , 2012 , 12 ( 6 ): 2852 - 2858 .
LI X , SHEN D , YANG J , et al. . Successive layer-by-layer strategy for multi-shell epitaxial growth: shell thickness and doping position dependence in upconverting optical properties [J]. Chem. Mater. , 2013 , 25 ( 1 ): 106 - 112 .
LI X , GUO Z , ZHAO T , et al. . Filtration shell mediated power density independent orthogonal excitations-emissions upconversion luminescence [J]. Angew. Chem. Int. Ed. , 2016 , 55 ( 7 ): 2464 - 2469 .
LI X , WANG R , ZHANG F , et al. . Nd 3+ sensitized up/down converting dual-mode nanomaterials for efficient in-vitro and in-vivo bioimaging excited at 800 nm [J]. Sci. Rep. , 2013 , 3 : 3536 .
WANG R , LI X M , ZHOU L , et al. . Epitaxial seeded growth of rare-earth nanocrystals with efficient 800 nm near-infrared to 1 525 nm short-wavelength infrared downconversion photoluminescence for in vivo bioimaging [J]. Angew. Chem. Int. Ed. , 2014 , 53 ( 45 ): 12086 - 12090 .
WANG R , ZHANG F. NIR luminescent nanomaterials for biomedical imaging [J]. J. Mater. Chem. B , 2014 , 2 ( 17 ): 2422 - 2443 .
ABEL K A , BOYER J C , VEGGEL F C V. Hard proof of the NaYF 4 /NaGdF 4 nanocrystal core/shell structure [J]. J. Am. Chem. Soc. , 2009 , 131 ( 41 ): 14644 - 14645 .
LI X , WANG R , ZHANG F , et al. . Engineering homogeneous doping in single nanoparticle to enhance upconversion effi-ciency [J]. Nano Lett. , 2014 , 14 ( 6 ): 3634 - 3639 .
JOHNSON N J , KORINEK A , DONG C , et al. . Self-focusing by Ostwald ripening: a strategy for layer-by-layer epitaxial growth on upconverting nanocrystals [J]. J. Am. Chem. Soc. , 2012 , 134 ( 27 ): 11068 - 11071 .
SON D H , HUGHES S M , YIN Y , et al. . Cation exchange reactions in ionic nanocrystals [J]. Science , 2004 , 306 ( 5698 ): 1009 - 1012 .
ROBINSON R D , SADTLER B , DEMCHENKO D O , et al. . Spontaneous superlattice formation in nanorods through partial cation exchange [J]. Science , 2007 , 317 ( 5836 ): 355 - 358 .
DONG C , VAN VEGGEL F C. Cation exchange in lanthanide fluoride nanoparticles [J]. ACS Nano , 2008 , 3 ( 1 ): 123 - 130 .
DONG C , KORINEK A , BLASIAK B , et al. . Cation exchange: a facile method to make NaYF 4 ∶Yb, Tm-NaGdF 4 coreshell nanoparticles with a thin, tunable, and uniform shell [J]. Chem. Mater. , 2012 , 24 ( 7 ): 1297 - 1305 .
HAN S , QIN X , AN Z , et al. . Multicolour synthesis in lanthanide-doped nanocrystals through cation exchange in water [J]. Nat. Commun. , 2016 , 7 : 13059 .
0
Views
123
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution