浏览全部资源
扫码关注微信
吉林大学电子科学与工程学院 集成光电子学国家重点实验室,吉林 长春 130012
Received:27 October 2017,
Revised:22 November 2017,
Published:2018-01
移动端阅览
Wen XU, Xu CHEN, Hong-wei SONG. Manipulation of Local Electromagnetic Field in Upconversion Luminescence of Rare Earth Ions[J]. Chinese journal of luminescence, 2018, 39(1): 1-26.
Wen XU, Xu CHEN, Hong-wei SONG. Manipulation of Local Electromagnetic Field in Upconversion Luminescence of Rare Earth Ions[J]. Chinese journal of luminescence, 2018, 39(1): 1-26. DOI: 10.3788/fgxb20183901.0001.
稀土上转换发光材料在太阳能电池、近红外防伪、生物应用等领域展示了广泛的应用前景,但还存在发光效率低、吸收截面小等亟待解决的瓶颈问题。上转换纳米晶的局域电磁场调制是提高其发光强度/效率的最有效的方法之一。本文系统地总结与阐述了近年来国内外在利用贵金属/半导体纳米材料的表面等离子体效应和光子晶体效应诱导上转换增强方面的研究进展。首先介绍了局域场增强上转换发光的基本原理;在此基础上介绍了关于局域场调制增强上转换发光的主要研究工作;总结了采用局域场调控获取高效上转换发光的基本规律。
Rare earth doped upconversion nanocrystals (RE-UCNCs) have attracted extensive interests due to their great potential applications in solar cells
near-infrared anticounterfei
bio-applications
etc
. However
these applications are limited by their lower upconvsersion luminescent strength/efficiency
and smaller absorption cross-section. The local electromagnetic field modulation on UCNCs is a powerful strategy to enhance the strength/efficiency of UCNCs. This review offered a comprehensive framework for metal/semiconductor plasmon-induced and photonic crystal effect induced upconversion enhancement. We first introduced the general interaction rules between the localized electromagnetic field in metal/semiconductor nanostructure/photonic crystals and UCNCs. Then
we summed up the recent published works on the local field modulation-induced upconversion enhancement. Finally
we did our best to discover the generality of obtaining highly improved photoluminescence for any emitters and the personality of realizing highly improved upconversion enhancement.
AUZEL F . Upconversion and anti-Stokes processes with F and D ions in solids [J]. Chem. Rev. , 2004 , 104 : 139 - 174 .
POLLNAU M , GAMELIN D R , LÜTHI S , Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems [J]. Phys. Rev. B , 2000 , 61 : 3337 .
SCHEPS R . Upconversion laser processes [J]. Prog. Quant. Electron. , 1996 , 20 : 271 - 358 .
ZOU X , IZUMITANI T . Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er 3+ -doped glasses [J]. J. Non - Cryst. Solids , 1993 , 162 : 68 - 80 .
KAISER W. GARRETT C . Two-photon excitation in CaF 2 ∶Eu 2+ [J]. Phys. Rev. Lett. , 1961 , 7 : 229 .
DOWNING E , HESSELINK L , RALSTON J , et al . . A three-color, solid-state, three-dimensional display [J]. Science , 1996 , 273 : 1185 .
GIESEN A , HÜGEL H , VOSS A , et al . . Scalable concept for diode-pumped high-power solid-state lasers [J]. Appl. Phys. B: Lasers Opt. , 1994 , 58 : 365 - 372 .
KWON S J , LEE G Y , JUNG K , et al . . A plasmonic platform with disordered array of metal nanoparticles for three-order enhanced upconversion luminescence and highly sensitive near-infrared photodetector [J]. Adv. Mater. , 2016 , 28 : 7899 - 7909 .
VAN DER ENDE B M , AARTS L , MEIJERINK A . Lanthanide ions as spectral converters for solar cells [J]. Phys. Chem. Chem. Phys. , 2009 , 11 : 11081 - 11095 .
HUANG X , HAN S , HUANG W , et al . . Enhancing solar cell efficiency: the search for luminescent materials as spectral converters [J]. Chem. Soc. Rev. , 2013 , 42 : 173 - 201 .
YANG D , HOU Z , CHENG Z , et al . . Current Advances in lanthanide ion ( Ln 3+ )-based upconversion nanomaterials for drug delivery [J]. Chem. Soc. Rev. , 2015 , 44 : 1416 - 1448 .
DONG H , DU S R , ZHENG X Y , et al . . Lanthanide nanoparticles: from design toward bioimaging and therapy [J]. Chem. Rev. , 2015 , 115 : 10725 - 10815 .
HILDERBRAND S A , SHAO F , SALTHOUSE C , et al . . Upconverting luminescent nanomaterials: application to in vivo bioimaging [J]. Chem. Commun. , 2009 , 28 ( 28 ): 4188 - 4190 .
SU Q , FENG W , YANG D , et al . . Resonance energy transfer in upconversion nanoplatforms for selective biodetection [J]. ACC Chem. Res. , 2016 , 50 : 32 - 40 .
LIU Q , PENG J , SUN L , et al . . High-efficiency upconversion luminescent sensing and bioimaging of Hg (Ii) by chromophoric ruthenium complex-assembled nanophosphors [J]. ACS Nano , 2011 , 5 : 8040 - 8048 .
WANG F , HAN Y , LIM C S , et al . . Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping [J]. Nature , 2010 , 463 : 1061 .
ZHENG W , HUANG P , TU D , et al . . Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection [J]. Chem. Soc. Rev. , 2015 , 44 : 1379 - 1415 .
SHALAV A , RICHARDS B , GREEN M . Luminescent layers for enhanced silicon solar cell performance: up-conversion [J]. Solar Energy Mater. Solar Cells , 2007 , 91 : 829 - 842 .
SHAN G B , DEMOPOULOS G P . Near-infrared sunlight harvesting in dye-sensitized solar cells via the insertion of an upconverter-TiO 2 nanocomposite layer [J]. Adv. Mater. , 2010 , 22 : 4373 - 4377 .
HAN S , DENG R , XIE X , et al . . Enhancing luminescence in lanthanide-doped upconversion nanoparticles [J]. Angew. Chem. Int. Ed. , 2014 , 53 : 11702 - 11715 .
WU D M , GARCÍA-ETXARRI A , SALLEO A , et al . . Plasmon-enhanced upconversion [J]. J. Phys. Chem. Lett. , 2014 , 5 : 4020 - 4031 .
CHEN S , PENG B , LU F , et al . . Scattering or photoluminescence major mechanism exploration on performance enhancement in P3HT-based polymer solar cells with NaYF 4 ∶2%Er 3+ ,18%Yb 3+ upconverting nanocrystals [J]. Adv. Opt. Mater. , 2014 , 2 : 442 - 449 .
CHEN G , DAMASCO J , QIU H , et al . . Energy-cascaded upconversion in an organic dye-sensitized core/shell fluoride nanocrystal [J]. Nano Lett. , 2015 , 15 : 7400 - 7407 .
CHEN G , OHULCHANSKYY T Y , LIU S , et al . . Core/shell NaGdF 4 ∶Nd 3+ /NaGdF 4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications [J]. ACS Nano , 2012 , 6 : 2969 - 2977 .
LI Z , ZHANG Y , JIANG S . Multicolor core/shell-structured upconversion fluorescent nanoparticles [J]. Adv. Mater. , 2008 , 20 : 4765 - 4769 .
PIRES A M , HEER S , GÜDEL H U , et al . . Er, Yb doped yttrium based nanosized phosphors: particle size,“host lattice” and doping ion concentration effects on upconversion efficiency [J]. J. Fluoresc. , 2006 , 16 : 461 - 468 .
SILVER J , MARTINEZ-RUBIO M , IRELAND T , et al . . The effect of particle morphology and crystallite size on the upconversion luminescence properties of erbium and ytterbium co-doped yttrium oxide phosphors [J]. J. Phys. Chem. B , 2001 , 105 : 948 - 953 .
WANG J , DENG R , MACDONALD M A , et al . . Enhancing multiphoton upconversion through energy clustering at sublattice level [J]. Nat. Mater. , 2014 , 13 : 157 .
ZENG J H , SU J , LI Z H , et al . . Synthesis and upconversion luminescence of hexagonal-phase NaYF 4 ∶Yb, Er phosphors of controlled size and morphology [J]. Adv. Mater. , 2005 , 17 : 2119 - 2123 .
ZHANG J , SHADE C M , CHENGELIS D A , et al . . A strategy to protect and sensitize near-infrared luminescent Nd 3+ and Yb 3+ :organic tropolonate ligands for the sensitization of Ln 3+ -doped NaYF 4 nanocrystals [J]. J. Am. Chem. Soc. , 2007 , 129 : 14834 - 14835 .
ZOU W , VISSER C , MADURO J A , et al . . Broadband dye-sensitized upconversion of near-infrared light [J]. Nat. Photon. , 2012 , 6 : 560 - 564 .
FORT E , GRÉSILLON S . Surface enhanced fluorescence [J]. J. Phys. D: Appl. Phys. , 2007 , 41 : 013001 .
PELTON M . Modified spontaneous emission in nanophotonic structures [J]. Nat. Photon. , 2015 , 9 : 427 .
SCHIETINGER S , AICHELE T , WANG H Q , et al . . Plasmon-enhanced upconversion in single NaYF 4 ∶Yb 3+ /Er 3+ codoped nanocrystals [J]. Nano Lett. , 2009 , 10 : 134 - 138 .
YIN Z , ZHU Y , XU W , et al . . Remarkable enhancement of upconversion fluorescence and confocal imaging of pmma opal/NaYF 4 ∶Yb 3+ ,Tm 3+ /Er 3+ nanocrystals [J]. Chem. Commun. , 2013 , 49 : 3781 - 3783 .
YIN Z , LI H , XU W , et al . . Local field modulation induced three-order upconversion enhancement: combining surface plasmon effect and photonic crystal effect [J]. Adv. Mater. , 2016 , 28 : 2518 - 2525 .
ZHAN Q , ZHANG X , ZHAO Y , et al . . Tens of thousands-fold upconversion luminescence enhancement induced by a single gold nanorod [J]. Laser Photon. Rev. , 2015 , 9 : 479 - 487 .
GEDDES C D , LAKOWICZ J R . Metal-enhanced fluorescence [J]. J. Fluoresc. , 2002 , 12 : 121 - 129 .
WILLETS K A , VAN DUYNE R P . Localized surface plasmon resonance spectroscopy and sensing [J]. Annu. Rev. Phys. Chem. , 2007 , 58 : 267 - 297 .
AKSELROD G M , ARGYROPOULOS C , HOANG T B , et al . . Probing the mechanisms of large purcell enhancement in plasmonic nanoantennas [J]. Nat. Photon. , 2014 , 8 : 835 - 840 .
ANGER P , BHARADWAJ P , NOVOTNY L . Enhancement and quenching of single-molecule fluorescence [J]. Phys. Rev. Lett. , 2006 , 96 : 113002 .
BARDHAN R , GRADY N K , COLE J R , et al . . Fluorescence enhancement by Au nanostructures: nanoshells and nanorods [J]. ACS Nano , 2009 , 3 : 744 - 752 .
JIANG Y , WANG H Y , WANG H , et al . . Surface plasmon enhanced fluorescence of dye molecules on metal grating films [J]. J. Phys. Chem. C , 2011 , 115 : 12636 - 12642 .
KÜHN S , HÅKANSON U , ROGOBETE L , et al . . Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna [J]. Phys. Rev. Lett. , 2006 , 97 : 017402 .
AOUANI H , RAHMANI M , NAVARRO-CÍA M , et al . . Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna [J]. Nat. Nanotechnol. , 2014 , 9 : 290 - 294 .
FANG X , SONG H , XIE L , et al . . Origin of Luminescence Enhancement and quenching of europium complex in solution phase containing Ag nanoparticles [J]. J. Chem. Phys. , 2009 , 131 : 054506 .
HAYAKAWA T , SELVAN S T , NOGAMI M . Field enhancement effect of small ag particles on the fluorescence from Eu 3+ -doped SiO 2 glass [J]. Appl. Phys. Lett. , 1999 , 74 : 1513 - 1515 .
JIMÉNEZ J , LYSENKO S , LIU H . Photoluminescence via plasmon resonance energy transfer in silver nanocomposite glasses [J]. J. Appl. Phys. , 2008 , 104 : 054313 .
KASSAB L R , DE ARA JO C B , KOBAYASHI R A , et al . . Influence of silver nanoparticles in the luminescence efficiency of Pr 3+ -doped tellurite glasses [J]. J. Appl. Phys. , 2007 , 102 : 103515 .
LEE S M , CHOI K C , KIM D H , et al . . Localized surface plasmon enhanced cathodoluminescence from Eu 3+ -doped phosphor near the nanoscaled silver particles [J]. Opt. Express , 2011 , 19 : 13209 - 13217 .
LI J , YANG Z , SHAO B , et al . . Photoluminescence enhancement of SiO 2 -coated LaPO 4 ∶Eu 3+ inverse opals by surface plasmon resonance of Ag nanoparticles [J]. J. Am. Chem. Soc. , 2016 , 99 : 3330 - 3335 .
LOUIS C , ROUX S , LEDOUX G , et al . . Gold nano-antennas for increasing luminescence [J]. Adv. Mater. , 2004 , 16 : 2163 - 2166 .
MALTA O , SANTA-CRUZ P , DE SA G , et al . . Fluorescence enhancement induced by the presence of small silver particles in Eu 3+ doped materials [J]. J. Lumin. , 1985 , 33 : 261 - 272 .
MERTENS H , POLMAN A . Plasmon-enhanced erbium luminescence [J]. Appl. Phys. Lett. , 2006 , 89 : 211107 .
MUNECHIKA K , CHEN Y , TILLACK A F , et al . . Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms [J]. Nano Lett. , 2010 , 10 : 2598 - 2603 .
NARANJO L P , DE ARA JO C B , MALTA O L , et al . . Enhancement of Pr 3+ luminescence in PbO-GeO 2 glasses containing silver nanoparticles [J]. Appl. Phys. Lett. , 2005 , 87 : 241914 .
RAY K , BADUGU R , LAKOWICZ J R . Metal-enhanced fluorescence from CdTe nanocrystals: a single-molecule fluorescence study [J]. J. Am. Chem. Soc. , 2006 , 128 : 8998 - 8999 .
ROPP C , CUMMINS Z , NAH S , et al . . Nanoscale imaging and spontaneous emission control with a single nano-positioned quantum dot [J]. Nat. Commun. , 2013 , 4 : 2477 .
SELVAN S T , HAYAKAWA T , NOGAMI M . Remarkable influence of silver islands on the enhancement of fluorescence from Eu 3+ ion-doped silica gels [J]. J. Phys. Chem. B , 1999 , 103 : 7064 - 7067 .
UREÑA E B , KREUZER M P , ITZHAKOV S , et al . . Excitation enhancement of a quantum dot coupled to a plasmonic antenna [J]. Adv. Mater. , 2012 , 24 ( 44 ): 314 - 320 .
VISTE P , PLAIN J , JAFFIOL R , VIAL A , et al . . Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources [J]. ACS Nano , 2010 , 4 : 759 - 764 .
WANG Q , SONG F , MING C , et al . . Plasmonic-enhanced quantum efficiency of europium complex using annealed silver island films [J]. JOSA B , 2011 , 28 : 220 - 224 .
XU W , BAI X , XU S , et al . . Remarkable fluorescence enhancement in YVO 4 ∶Eu 3+ @Ag nano-hybrids induced by interface effect [J]. RSC Adv. , 2012 , 2 : 2047 - 2054 .
ESTEBAN R , LAROCHE M , GREFFET J J . Influence of metallic nanoparticles on upconversion processes [J]. J. Appl. Phys. , 2009 , 105 : 033107 .
MOHAMMADI A , SANDOGHDAR V , AGIO M . Gold nanorods and nanospheroids for enhancing spontaneous emission [J]. New J. Phys. , 2008 , 10 : 105015 .
GIANNINI V , FERNÁNDEZ-DOMÍNGUEZ A I , HECK S C , et al . . Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters [J]. Chem. Rev. , 2011 , 111 : 3888 - 3912 .
LIU X , LEI D Y . Simultaneous excitation and emission enhancements in upconversion luminescence using plasmonic double-resonant gold nanorods [J]. Scient. Rep. , 2015 , 5 : 15235 .
FENG W , SUN L D , YAN C H . Ag nanowires enhanced upconversion emission of NaYF 4 ∶Yb, Er nanocrystalsvia a direct assembly method [J]. Chem. Commun. , 2009 ( 29 ): 4393 - 4395 .
XU W , XU S , ZHU Y , et al . . Ultra-broad plasma resonance enhanced multicolor emissions in an assembled Ag/NaYF 4 ∶Yb, Er nano-film [J]. Nanoscale , 2012 , 4 : 6971 - 6973 .
YIN Z , ZHANG X , ZHOU D , et al . . Enhanced upconversion luminescence on the plasmonic architecture of Au-Ag nanocages [J]. RSC Adv. , 2016 , 6 : 86297 - 86300 .
YIN Z , ZHOU D , XU W , et al . . Plasmon-enhanced upconversion luminescence on vertically aligned gold nanorod monolayer supercrystals [J]. ACS Appl. Mater. Interf. , 2016 , 8 : 11667 - 11674 .
XU W , ZHU Y , CHEN X , et al . . A novel strategy for improving upconversion luminescence of NaYF 4 ∶Yb, Er nanocrystals by coupling with hybrids of silver plasmon nanostructures and poly (methyl methacrylate) photonic crystals [J]. Nano Res. , 2013 , 6 : 795 - 807 .
CHEN X , XU W , ZHANG L , et al . . Large upconversion enhancement in the “islands” Au-Ag alloy/NaYF 4 ∶Yb 3+ ,Tm 3+ /Er 3+ composite films, and fingerprint identification [J]. Adv. Funct. Mater. , 2015 , 25 : 5462 - 5471 .
LEE G Y , JUNG K , JANG H S , et al . . Upconversion luminescence enhancement in plasmonic architecture with random assembly of metal nanodomes [J]. Nanoscale , 2016 , 8 : 2071 - 2080 .
SABOKTAKIN M , YE X , OH S J , et al . . Metal-enhanced upconversion luminescence tunable through metal nanoparticle-nanophosphor separation [J]. ACS Nano , 2012 , 6 : 8758 - 8766 .
ROHANI S , QUINTANILLA M , TUCCIO S , et al . . Enhanced luminescence, collective heating, and nanothermometry in an ensemble system composed of lanthanide-doped upconverting nanoparticles and gold nanorods [J]. Adv. Opt. Mater. , 2015 , 3 : 1606 - 1613 .
FENG A L , YOU M L , TIAN L , et al . . Distance-dependent plasmon-enhanced fluorescence of upconversion nanoparticles using polyelectrolyte multilayers as tunable spacers [J]. Scient. Rep. , 2015 , 5 : 7779 .
VETRONE F , NACCACHE R , MAHALINGAM V , et al . . The active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles [J]. Adv. Funct. Mater. , 2009 , 19 : 2924 - 2929 .
CHEN G , SHEN J , OHULCHANSKYY T Y , et al . . (Α-NaYbF 4 ∶Tm 3+ )/CaF 2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging [J]. ACS Nano , 2012 , 6 : 8280 - 8287 .
YI G S , CHOW G M . Water-soluble NaYF 4 ∶Yb, Er (Tm)/NaYF 4 /polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence [J]. Chem. Mater. , 2007 , 19 : 341 - 343 .
MAI H X , ZHANG Y W , SUN L D , et al . . Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF 4 ∶Yb, Er core and core/shell-structured nanocrystals [J]. J. Phys. Chem. C , 2007 , 111 : 13721 - 13729 .
ZHANG F , BRAUN G B , SHI Y , et al . . Fabrication of Ag@SiO 2 @Y 2 O 3 ∶Er nanostructures for bioimaging: tuning of the upconversion fluorescence with silver nanoparticles [J]. J. Am. Chem. Soc. , 2010 , 132 : 2850 - 2851 .
CHEN X , ZHOU D , XU W , et al . . Fabrication of Au-Ag nanocage@NaYF 4 @NaYF 4 ∶Yb, Er core-shell hybrid and its tunable upconversion enhancement [J]. Scient. Rep. , 2017 , 7 : 41079 .
CHEN X , XU W , ZHU Y , et al . . Nd 2 O 3 /Au nanocomposites: upconversion broadband emission and enhancement under near-infrared light excitation [J]. J. Mater. Chem. C , 2014 , 2 : 5857 - 5863 .
LI H , DENG Q , LIU B , et al . . Fabrication of core@spacer@shell Au nanorod@ M SiO 2 @Y 2 O 3 ∶Er nanocomposites with enhanced upconversion fluorescence [J]. RSC Adv. , 2016 , 6 : 13343 - 13348 .
LIU T , BAI X , MIAO C , et al . . Yb 2 O 3 /Au upconversion nanocomposites with broad-band excitation for solar cells [J]. J. Phys. Chem. C , 2014 , 118 : 3258 - 3265 .
XU W , MIN X , CHEN X , et al . . Ag-SiO 2 -Er 2 O 3 nanocomposites: highly effective upconversion luminescence at high power excitation and high temperature [J]. Scient. Rep. , 2014 , 4 : 5087 .
YIN D , WANG C , OUYANG J , et al . . Synthesis of a novel core-shell nanocomposite Ag@SiO 2 @Lu 2 O 3 ∶Gd/Yb/Er for large enhancing upconversion luminescence and bioimaging [J]. ACS Appl. Mater. Interf. , 2014 , 6 : 18480 - 18488 .
ZHANG C , LEE J Y . Synthesis of Au nanorod@amine-modified silica@rare-earth fluoride nanodisk core-shell-shell heteronanostructures [J]. J. Phys. Chem. C , 2013 , 117 : 15253 - 15259 .
WANG J , TANNER P A . Upconversion for white light generation by a single compound [J]. J. Am. Chem. Soc. , 2009 , 132 : 947 - 949 .
STREK W , MARCINIAK L , BEDNARKIEWICZ A , et al . . White emission of lithium ytterbium tetraphosphate nanocrystals [J]. Opt. Express , 2011 , 19 : 14083 - 14092 .
WANG J , HAO J H , TANNER P A . Luminous and tunable white-light upconversion for YAg (Yb 3 Al 5 O 12 ) and (Yb, Y) 2 O 3 nanopowders [J]. Opt. Lett. , 2010 , 35 : 3922 - 3924 .
XU S , ZHU Y , XU W , et al . . Observation of ultrabroad infrared emission bands in Er 2 O 3 , Pr 2 O 3 , Nd 2 O 3 , and Sm 2 O 3 polycrystals [J]. Appl. Phys. Express , 2012 , 5 : 102701 .
ZHANG H , LI Y , IVANOV I A , et al . . Plasmonic modulation of the upconversion fluorescence in NaYF 4 ∶Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells [J]. Angew. Chem. , 2010 , 122 : 2927 - 2930 .
LIU N , QIN W , QIN G , et al . . Highly plasmon-enhanced upconversion emissions from Au@Β-NaYF 4 ∶Yb, Tm hybrid nanostructures [J]. Chem. Commun. , 2011 , 47 : 7671 - 7673 .
XU W , CHEN B , YU W , et al . . The up-conversion luminescent properties and silver-modified luminescent enhancement of YVO 4 ∶Yb 3+ ,Er 3+ Nps [J]. Dalton Trans. , 2012 , 41 : 13525 - 13532 .
SUDHEENDRA L , ORTALAN V , DEY S , et al . . Plasmonic enhanced emissions from cubic NaYF 4 ∶Yb∶Er/Tm nanophosphors [J]. Chem. Mater. , 2011 , 23 : 2987 - 2993 .
PRIYAM A , IDRIS N M , ZHANG Y . Gold nanoshell coated NaYF 4 nanoparticles for simultaneously enhanced upconversion fluorescence and darkfield imaging [J]. J. Mater. Chem. , 2012 , 22 : 960 - 965 .
DENG W , SUDHEENDRA L , ZHAO J , et al . . Upconversion in NaYF 4 ∶Yb, Er nanoparticles amplified by metal nanostructures [J]. Nanotechnology , 2011 , 22 : 325604 .
FUJII M , NAKANO T , IMAKITA K , et al . . Upconversion luminescence of Er and Yb codoped NaYF 4 nanoparticles with metal shells [J]. J. Phys. Chem. C , 2013 , 117 : 1113 - 1120 .
LIU X , LEI D Y . Simultaneous excitation and emission enhancements in upconversion luminescence using plasmonic double-resonant gold nanorods [J]. Scient. Rep. , 2015 , 5 : 15235
YIN Z , LI H , XU W , et al . . Local field modulation induced three-order upconversion enhancement: combining surface plasmon effect and photonic crystal effect [J]. Adv. Mater. , 2016 , 28 ( 13 ): 2518 - 2525 .
LI Z , WANG L , WANG Z , et al . . Modification of NaYF 4 ∶Yb, Er@SiO 2 nanoparticles with gold nanocrystals for tunable green-to-red upconversion emissions [J]. J. Phys. Chem. C , 2011 , 115 : 3291 - 3296 .
VERHAGEN E , KUIPERS L , POLMAN A . Field enhancement in metallic subwavelength aperture arrays probed by erbium upconversion luminescence [J]. Opt. Express , 2009 , 17 : 14586 - 14598 .
SABOKTAKIN M , YE X , CHETTIAR U K , et al . . Plasmonic enhancement of nanophosphor upconversion luminescence in Au nanohole arrays [J]. ACS Nano , 2013 , 7 : 7186 - 7192 .
LU D , CHO S K , AHN S , et al . . Plasmon enhancement mechanism for the upconversion processes in NaYF 4 ∶Yb 3+ ,Er 3+ nanoparticles: Maxwell versus Förster [J]. ACS Nano , 2014 , 8 : 7780 - 7792 .
LIN J H , LIOU H Y , WANG C D , et al . . Giant enhancement of upconversion fluorescence of NaYF 4 ∶Yb 3+ ,Tm 3+ nanocrystals with resonant waveguide grating substrate [J]. ACS Photon. , 2015 , 2 : 530 - 536 .
SUN Q C , MUNDOOR H , RIBOT J C , et al . . Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals [J]. Nano Lett. , 2013 , 14 : 101 - 106 .
LUU Q , HOR A , FISHER J , et al . . Two-color surface plasmon polariton enhanced upconversion in NaYF 4 ∶Yb∶Tm nanoparticles on Au nanopillar arrays [J]. J. Phys. Chem. C , 2014 , 118 : 3251 - 3257 .
ZHANG W , DING F , CHOU S Y . Large enhancement of upconversion luminescence of NaYF 4 ∶Yb 3+ /Er 3+ nanocrystal by 3D plasmonic nano-antennas [J]. Adv. Mater. , 2012 , 24 : 236 - 241 .
JIN L M , CHEN X , SIU C K , et al . . Enhancing multiphoton upconversion from NaYF 4 ∶Yb/Tm@NaYF 4 core-shell nanoparticles via the use of laser cavity [J]. ACS Nano , 2017 , 11 ( 1 ): 843 - 849 .
SONG J H , KIM J , JANG H , et al . . Fast and bright spontaneous emission of Er 3+ ions in metallic nanocavity [J]. Nat. Commun. , 2015 , 6 ( 1 ): 7080 .
EL HALAWANY A , HE S , HODAEI H , et al . . Enhanced UV upconversion emission using plasmonic nanocavities [J]. Opt. Express , 2016 , 24 : 13999 - 14009 .
GREYBUSH N J , SABOKTAKIN M , YE X , et al . . Plasmon-enhanced upconversion luminescence in single nanophosphor-nanorod heterodimers formed through template-assisted self-assembly [J]. ACS Nano , 2014 , 8 : 9482 - 9491 .
WANG Y L , ESTAKHRI N M , JOHNSON A , et al . . Tailoring plasmonic enhanced upconversion in single NaYF 4 ∶Yb 3+ /Er 3+ nanocrystals [J]. Scient. Rep. , 2015 , 5 : 10196 .
MAUSER N , HARTSCHUH A . Tip-enhanced near-field optical microscopy [J]. Chem. Soc. Rev. , 2014 , 43 : 1248 - 1262 .
Mauser N , Piatkowski D , Mancabelli T , et al . . Tip enhancement of upconversion photoluminescence from rare earth ion doped nanocrystals [J]. ACS Nano , 2015 , 9 : 3617 - 3626 .
CHEN G , DING C , WU E , et al . . Tip-enhanced upconversion luminescence in Yb 3+ -Er 3+ codoped NaYF 4 nanocrystals [J]. J. Phys. Chem. C , 2015 , 119 : 22604 - 22610 .
JOHN S . Strong localization of photons in certain disordered dielectric superlattices [J]. Phys. Rev. Lett. , 1987 , 58 : 2486 .
YABLONOVITCH E . Inhibited spontaneous emission in solid-state physics and electronics [J]. Phys. Rev. Lett. , 1987 , 58 : 2059 .
LIN S , FLEMING J , HETHERINGTON D , et al . . Three-dimensional photonic crystal operating at infrared wavelengths [J]. Nature , 1998 , 394 : 251 - 253 .
HILTNER P A , KRIEGER I M . Diffraction of light by ordered suspensions [J]. J. Phys. Chem. , 1969 , 73 : 2386 - 2389 .
PETROV E , BOGOMOLOV V , KALOSHA I , et al . . Spontaneous emission of organic molecules embedded in a photonic crystal [J]. Phys. Rev. Lett. , 1998 , 81 : 77 .
LODAHL P , VAN DRIEL A F , NIKOLAEV I S , et al . . Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals [J]. Nature , 2004 , 430 : 654 - 657 .
MELTZER R , FEOFILOV S , TISSUE B , et al . . Dependence of fluorescence lifetimes of Y 2 O 3 ∶Eu 3+ nanoparticles on the surrounding medium [J]. Phys. Rev. B , 1999 , 60 : R14012 .
ZHU Y , XU W , ZHANG H , et al . . Inhibited long-scale energy transfer in dysprosium doped yttrium vanadate inverse opal [J]. J. Phys. Chem. C , 2012 , 116 : 2297 - 2302 .
TAO L , XU W , ZHU Y , et al . . Modulation of upconversion luminescence in Er 3+ ,Yb 3+ -codoped lanthanide oxyfluoride (YOF, GdOF, LaOF) inverse opals [J]. J. Mater. Chem. C , 2014 , 2 : 4186 - 4195 .
WANG Y , XU W , CUI S , et al . . Highly improved upconversion luminescence in NaGd (WO 4 ) 2 ∶Yb 3+ /Tm 3+ inverse opal photonic crystals [J]. Nanoscale , 2015 , 7 : 1363 - 1373 .
ZHU Y , XU W , ZHANG H , et al . . Inhibited local thermal effect in upconversion luminescence of YVO 4 ∶Yb 3+ ,Er 3+ inverse opals [J]. Opt. Express , 2012 , 20 : 29673 - 29678 .
YANG Y , ZHOU P , XU W , et al . . NaYF 4 ∶Yb 3+ ,Tm 3+ inverse opal photonic crystals and NaYF 4 ∶Yb 3+ ,Tm 3+ /TiO 2 composites: synthesis, highly improved upconversion properties and NIR photoelectric response [J]. J. Mater. Chem. C , 2016 , 4 : 659 - 662 .
XU S , XU W , WANG Y , et al . . NaYF 4 ∶Yb, Tm nanocrystals and TiO 2 inverse opal composite films: a novel device for upconversion enhancement and solid-based sensing of avidin [J]. Nanoscale , 2014 , 6 : 5859 - 5870 .
LIAO J , YANG Z , LAI S , et al . . Upconversion emission enhancement of NaYF 4 ∶Yb, Er nanoparticles by coupling silver nanoparticle plasmons and photonic crystal effects [J]. J. Phys. Chem. C , 2014 , 118 : 17992 - 17999 .
NIU W , SU L T , CHEN R , et al . . 3-dimensional photonic crystal surface enhanced upconversion emission for improved near-infrared photoresponse [J]. Nanoscale , 2014 , 6 : 817 - 824 .
WANG H , YIN Z , XU W , et al . . Remarkable enhancement of upconversion luminescence on 2-D anodic aluminum oxide photonic crystals [J]. Nanoscale , 2016 , 8 : 10004 - 10009 .
LUTHER J M , JAIN P K , EWERS T , et al . . Localized surface plasmon resonances arising from free carriers in doped quantum dots [J]. Nat. Mater. , 2011 , 10 : 361 - 366 .
XIE Y , CARBONE L , NOBILE C , et al . . Metallic-like stoichiometric copper sulfide nanocrystals: phase-and shape-selective synthesis, near-infrared surface plasmon resonance properties, and their modeling [J]. ACS Nano , 2013 , 7 : 7352 - 7369 .
ZHOU D , LIU D , XU W , et al . . Observation of considerable upconversion enhancement induced by Cu 2- x S plasmon nanoparticles [J]. ACS Nano , 2016 , 10 : 5169 - 5179 .
ZHOU D , LIU D , XU W , et al . . Synergistic upconversion enhancement induced by multiple physical effects and an angle-dependent anticounterfeit application [J]. Chem. Mater. , 2017 , 29 : 6799 - 6809 .
ZHOU D , LI D , ZHOU X , et al . . Semiconductor plasmon induced upconversion enhancement in M Cu 2- x S@SiO 2 @Y 2 O 3 ∶Yb 3+ ,Er 3+ core-shell nanocomposites [J]. ACS Appl. Mater. Interf. , 2017 , 9 ( 40 ): 35226 .
YUAN P , LEE Y H , GNANASAMMANDHAN M K , et al . . Plasmon enhanced upconversion luminescence of NaYF 4 ∶Yb, Er@SiO 2 @Ag core-shell nanocomposites for cell imaging [J]. Nanoscale , 2012 , 4 : 5132 - 5137 .
RAI M , SINGH S K , SINGH A K , et al . . Enhanced red upconversion emission, magnetoluminescent behavior, and bioimaging application of NaSc 0.75 Er 0. 02 Yb 0. 18 Gd 0. 05 F 4 @aunps nanoparticles [J]. ACS Appl. Mater. Interf. , 2015 , 7 : 15339 - 15350 .
CHEN C W , CHAN Y C , HSIAO M , et al . . Plasmon-enhanced photodynamic cancer therapy by upconversion nanoparticles conjugated with Au nanorods [J]. ACS Appl. Mater. Interf. , 2016 , 8 : 32108 - 32119 .
LEE S M , LI W , DHAR P , et al . . High-performance flexible nanostructured silicon solar modules with plasmonically engineered upconversion medium [J]. Adv. Energy Mater. , 2015 , 5 ( 21 ): doi: 10.1002/aenm.201500761 http://doi.org/10.1002/aenm.201500761 .
LUOSHAN M , BAI L , BU C , et al . . Surface plasmon resonance enhanced multi-shell-modified upconversion NaYF 4 ∶Yb 3+ ,Er 3+ @SiO 2 @Au@TiO 2 crystallites for dye-sensitized solar cells [J]. J. Power Sources , 2016 , 307 : 468 - 473 .
PARK K , JUNG K , KWON S J , et al . . Plasmonic nanowire-enhanced upconversion luminescence for anticounterfeit devices [J]. Adv. Funct. Mater. , 2016 , 26 : 7836 - 7846 .
0
Views
131
下载量
7
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution