浏览全部资源
扫码关注微信
黑龙江大学 电子工程学院, 黑龙江 哈尔滨 150080
Received:26 April 2017,
Revised:03 June 2017,
Published:05 December 2017
移动端阅览
甄佳奇, 仲维丹, 布音嘎日迪等. 正弦调制多光束激光外差测量压电材料电致伸缩系数[J]. 发光学报, 2017,38(12): 1661-1667
ZHEN Jia-qi, ZHONG Wei-dan, BU Yingaridi etc. Piezoelectric Material Electrostriction Coefficient Measurement Method Combined Sinusoidal Modulation with Multi-beam Laser Heterodyne[J]. Chinese Journal of Luminescence, 2017,38(12): 1661-1667
甄佳奇, 仲维丹, 布音嘎日迪等. 正弦调制多光束激光外差测量压电材料电致伸缩系数[J]. 发光学报, 2017,38(12): 1661-1667 DOI: 10.3788/fgxb20173812.1661.
ZHEN Jia-qi, ZHONG Wei-dan, BU Yingaridi etc. Piezoelectric Material Electrostriction Coefficient Measurement Method Combined Sinusoidal Modulation with Multi-beam Laser Heterodyne[J]. Chinese Journal of Luminescence, 2017,38(12): 1661-1667 DOI: 10.3788/fgxb20173812.1661.
电致伸缩系数反映了压电材料本身的固有属性,是衡量电致伸缩特性的重要参数之一。基于逆压电效应,准确测量微小长度变化量可实现电致伸缩系数的高精度测量。现有光学测量方法基于直接检测光强分布获取微小长度变化量,但受光源功率稳定性和环境扰动制约,测量精度不高。为此,本文采用多光束激光外差技术融合多普勒振镜正弦调制技术,加载微小长度变化量于外差信号频率中,研究测量微小长度变化量的外差信号理论模型及外差信号频率与电致伸缩系数间数学模型,实现外差信号频率检测取代直接强度检测,消除光源稳定性与环境扰动影响,并且采用频率解调可以同时获取多个微小长度变化量,对这些微小长度变化量加权平均,最终可以进一步提高电致伸缩系数的测量精度。以此为依据,通过理论仿真研究待测样品的电致伸缩系数,结果表明:该方法的相对测量误差仅为0.28%。与现有技术相比,测量精度提高了一个数量级。
The electrostriction coefficient can be accurately measured by using small length variation based on inverse piezoelectric effect. The conventional optical measuring method based on direct detection of light intensity distribution to obtain small length variation is restricted by light source power stability and environmental perturbation
and can not reach high measuring accuracy. This paper uses the combination of multi-beam laser heterodyne technique with sinusoidal modulation technique to load small length variation to the heterodyne signal frequency. By researching on the theoretical models of heterodyne signal for measuring small length variation
and the relationship between heterodyne signal frequency and electrostriction coefficient
the direct intensity detection can be replaced by heterodyne signal frequency detection
the effects of light source power stability and environmental perturbation can be removed. Many values of small length variation can be got by using the frequency demodulation simultaneously. Processing these values by weighted-average
can get length variation accurately
and eventually get value of electrostriction coefficient of piezoelectric material by the calculation. The measuring accuracy of electrostriction coefficient can be further improved. Based on this
the theoretical simulation research on electrostriction coefficient of testing sample can be acted
the obtained results show that the relative measurement error of this method is just 0.28%. The measuring accuracy is improved one order of magnitude compared with existing technique.
NADEZHDA A, LEONARD M S. Measurement of the electrostriction coefficient in liquids by stimulated Mandelshtam-Brillouin light scattering[J]. SPIE, 2001, 4605:394-398.
KHOLKIN A L, AKDOGAN E K, SAFARI A, et al.. Characterization of the effective electrostriction coefficients in ferroelectric thin films[J]. J. Appl. Phys., 2001, 89(12):8066-8073.
YURI M S, DANIEL J K. Material parameters for electrostriction[J]. J. Appl. Phys., 1996, 80(8):4566-4572.
LIU A C, DIGONNET MICHEL J F, KINO GORDON S. Measurement of the dc Kerr and electrostrictive phase modulation in silica[J]. JOSA B, 2001, 18(2):187-194.
LAM K S, ZHOU Y, WONG Y W, et al.. Electrostriction of lead zirconate titanate/polyurethane composites[J]. J. Appl. Phys., 2005, 97(10):104112-104117.
MUNN R W. Theory of piezoelectricity, electrostriction, and pyroelectricity in molecular crystals[J]. J. Chem. Phys., 2010, 132(10):104512-104517.
LIN R R. Measuring the coefficient of electrostriction with the method of laser interference[J]. Phys. Experiment., 2009, 29(6):4-7.
WU J F, LI J Q, LIN B P. Research of optical lever measure method on electrostrictive material strain[J]. Meas. Control Technol., 2007, 26(11):68-70.
WU J F, LI J Q, SONG A G, et al.. Electrostrictive material characteristic testing device based on capacitance method[J]. Instrum. Tech. Sens., 2008(3):85-87.
GAO J, GAO X X, LAN Y H. Measuring of magnetostriction using a noncontact electric eddy current sensor[J]. J. Magnet. Mater. Dev., 2007(3):57-59.
CHEN F X, CONG Y Q, LIN B P, et al.. Application of digital speckle correlation method for measuring electrostrictive effect[J]. Instrum. Tech. Sens., 2006(6):52-54.
JURNA M, KORTERIK J P, OTTO C, et al.. Shot noise limited heterodyne detection of CARS signals[J]. Opt. Express, 2007, 15:15207-15213.
CHEN K H, CHANG W Y, CHEN J H. Measurement of the pretilt angle and the cell gap of nematic liquid crystal cells by heterodyne interferometry[J]. Opt. Express, 2009, 17:14143-14149.
HIRAI A, MATSUMOTO H, LIN D, et al.. Heterodyne Fourier transform spectrometer for the near-infrared region[J]. Opt. Express, 2003, 11:1258-1264.
BITOU Y. Phase-shifting interferometry with feedback control using heterodyne phase detection[J]. Opt. Lett., 2008, 33:1777-1779.
宋晨, 吕岑, 郭琪, 等. 一种激光外差多普勒玻璃厚度测量方法[J]. 光子学报, 2008, 37(8):1635-1638. SONG C, LYU C, GUO Q, et al.. One method for measuring thickness of glass by using laser heterodyne and Doppler[J]. Acta Photon. Sinica, 2008, 37(8):1635-1638. (in Chinese)
庞亚军, 王春晖, 唐甜甜. 双平衡式相干接收原理及其在外差干涉仪中的应用研究[J]. 光子学报, 2012, 41(9):1015-1018. PANG Y J, WANG C H, TANG T T. Principle of dual-balanced coherent receive and its application in heterodyne interferometer[J]. Acta Photon. Sinica, 2012, 41(9):1015-1018. (in Chinese)
李晴棉, 李也凡, 何大伟, 等. 光外差电信号接收机[J]. 发光学报, 1998, 19(1):82-84. LI Q M, LI Y F, HE D W, et al.. Optics heterodyneing electronic signals receiving device[J]. Chin. J. Lumin., 1998, 19(1):82-84. (in Chinese)
梁赫西, 代永红, 艾勇, 等. 本振功率对空间平衡探测器相干探测灵敏度的影响[J]. 光学精密工程, 2017, 25(2):334-341. LIANG H X, DAI Y H, AI Y, et al.. Influence of local oscillator power on sensitivity of coherent detection of space balance detector[J]. Opt. Precision Eng., 2017, 25(2):334-341. (in Chinese)
钟金钢, 梁智强, 李仕萍. 激光自混合干涉角度测量参数优化及旋转方向判别[J]. 光学精密工程, 2016, 24(5):1001-1008. ZHONG J G, LAING Z Q, LI S P. Parameter optimization and direction recognition in ankle measurement by laser self-mixing interference[J]. Opt. Precision Eng., 2016, 24(5):1001-1008. (in Chinese)
刘丁枭, 盛伟繁, 王秋实, 等. 拼接干涉技术在同步辐射领域的发展现状及趋势[J]. 光学精密工程, 2016, 24(10):2354-2366. LIU D X, SHENG W F, WANG Q S, et al.. Current status and trends of stitching interferometry in synchrotron radiation field[J]. Opt. Precision Eng., 2016, 24(10):2354-2366. (in Chinese)
0
Views
145
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution