LI Zhi-yue, LYU Ying-bo, ZHAO Ji-feng etc. Fabrication and Electrical and Optical Properties of Nitrogen-doped In-Sn-Zn Oxide Thin-film Transistors[J]. Chinese Journal of Luminescence, 2017,38(12): 1622-1628
LI Zhi-yue, LYU Ying-bo, ZHAO Ji-feng etc. Fabrication and Electrical and Optical Properties of Nitrogen-doped In-Sn-Zn Oxide Thin-film Transistors[J]. Chinese Journal of Luminescence, 2017,38(12): 1622-1628 DOI: 10.3788/fgxb20173812.1622.
Fabrication and Electrical and Optical Properties of Nitrogen-doped In-Sn-Zn Oxide Thin-film Transistors
In-Sn-Zn oxide thin-film transistors were deposited at different nitrogen flow rates on P-Si
<
100
>
substrate by RF magnetron sputtering. The influence of nitrogen on the structure
optical and electrical properties and stabilities of ITZO TFTs was studied. The results show that nitrogen has no obvious effect on the structure of ITZO films and all thin films are amorphous. The average transmittance of all ITZO films approach or exceed 90% in the visible region and the optical band gaps are 3.28-3.32 eV. When the nitrogen flow rates increase to 4 mL/min during the sputter deposition
the ITZO TFTs with low interface state density(~4.310
11
cm
-2
) show excellent electrical properties
the sub-threshold swing is 0.39 V/dec and on/off ratio is 10
6
operated with the field-effect mobility(
FE
) of 18.72 cm
2
/(Vs). Moreover
the TFTs show better stability than others in the positive gate bias stress test. Overall
the suitable addition of nitrogen can improve the electrical performance and the stability of the ITZO TFTs by the passivation of oxygen vacancies and the drop of interface state density.
关键词
Keywords
references
FANG J L, DENG W L, MA X Y, et al.. Physical modeling of AOS TFTs based on symmetric quadrature method considering degenerate regime[C]. 20167th International Conference on Computer Aided Design for Thin-Film Transistor Technologies (Cad-Tft), Beijing, China, 2016:17.
KIM C K, KIM E, LEE M K, et al.. Electrothermal annealing (ETA) method to enhance the electrical performance of amorphous-oxide-semiconductor (AOS) thin-film transistors (TFTs)[J]. ACS Appl. Mater. Interf., 2016, 8(36):23820-23826.
吴崎, 许玲, 董承远. 非晶铟镓锌氧薄膜晶体管银/钛源漏电极的研究[J]. 液晶与显示, 2016, 31(4):375-379. WU Q, XU L, DONG C Y. Ag/Ti source/drain electrodes for amorphous InGaZnO thin flim transistors[J]. Chin. J. Liq. Cryst. Disp., 2016, 31(4):375-379. (in Chinese)
苟昌华, 武明珠, 郭永林, 等. 未退火InGaZnO作为缓冲层的InGaZnO薄膜晶体管性能研究[J]. 液晶与显示, 2015, 30(4):602-607. GOU C H, WU M Z, GUO Y L, et al.. Effects of using InGaZnO without annealing as buffer layer on the performance of InGaZnO thin film transistors[J]. Chin. J. Liq. Cryst. Disp., 2015, 30(4):602-607. (in Chinese)
ALSHAMMARI F H, NAYAK P K, WANG Z, et al..Enhanced ZnO thin-film transistor performance using bilayer gate dielectrics[J]. ACS Appl. Mater. Interf., 2016, 8(35):22751-22755.
REED A S, PAINE D C, LEE S. Effect of O2 fraction in the sputter gas on the electrical properties of amorphous In-Zn-O and the thin film transistor performance[J]. J. Electron. Mater., 2016, 45(12):6310-6316.
KIM M J, HEO Y M, CHO J H. Ladder-type silsesquioxane copolymer gate dielectrics for gating solution-processed IGZO field-effect transistors[J]. Org. Electron., 2017, 43:41-46.
LEE D M, KIM J K, HAO J, et al.. Effects of annealing and plasma treatment on the electrical and optical properties of spin-coated ITZO films[J]. J. Alloys Compd., 2014, 583:535-538.
FUKUMOTO E, ARAI T, MOROSAWA N, et al.. High-mobility oxide TFT for circuit integration of AMOLEDs[J]. J. Soc. Inform. Disp., 2011, 19(12):867-872.
严海, 蔡韵竹, 张群, 等. 氮掺杂非晶氧化铟锌薄膜晶体管的器件稳定性改善研究[J]. 真空科学与技术学报, 2015, 35(9):1054-1058. YAN H, TSAI Y Z, ZHANG Q, et al.. Impact of N2-doping on reliability of amorphous InZnO:N thin film transistors[J]. Chin. J. Vac. Sci. Technol., 2015, 35(9):1054-1058. (in Chinese)
JIANG J, WANG D, MATSUDA T, et al.. Influence of interface traps on the electrical properties of oxide thin-film transistors with different channel thicknesses[J]. J. Nano Res., 2017, 46:93-99.
SONG C W, KIM K H, YANG J W, et al.. Effects of Mg suppressor layer on the InZnSnO thin-film transistors[J]. J. Semicond. Technol. Sci., 2016, 16(2):198-203.
朱夏明. 掺氮氧化锌的光电特性及其在薄膜晶体管中的应用研究[D]. 杭州:浙江大学, 2010. ZHU X M. Optical and Electrical Properties of Nitrogen Doped ZnO and Application of It to Thin-film Transistors[D]. Hangzhou:Zhejiang University, 2010. (in Chinese)
RAJA J, JANG K, BALAJI N, et al.. Aging effects on the stability of nitrogen-doped, and un-doped InGaZnO thin-film transistors[J]. Mater. Sci. Semicond. Proc., 2015, 37:129-134.
DU AHN B, LEE K H, PARK J, et al.. The effect of nitrogen incorporation in Ge-In-Ga-O semiconductor and the associated thin film transistors[J]. Appl. Surf. Sci., 2015, 355:1267-1271.
刘媛媛, 赵继凤, 李延辉, 等. 溅射气压对铟锡锌氧化物薄膜晶体管性能的影响[J]. 真空科学与技术学报, 2016, 36(4):391-396. LIU Y Y, ZHAO J F, LI Y H, et al.. Fabrication and characterization of In2O3-SnO2-ZnO thin film transistor[J]. Chin. J. Vac. Sci. Technol., 2016, 36(4):391-396. (in Chinese)
SEUNG-HONG K, DAEIL K. Effect of a ZTO buffer layer on the structural, optical, and electrical properties of IGZO thin films[J]. Ceram. Int., 2015, 41(2):2770-2773.
CHEN X F, HE G, LIU M, et al.. Modulation of optical and electrical properties of sputtering-derived amorphous InGaZnO thin films by oxygen partial pressure[J]. J. Alloys Compd., 2014, 615:636-642.
李帅帅, 梁朝旭, 王雪霞, 等. 高迁移率非晶铟镓锌氧化物薄膜晶体管的制备与特性研究[J]. 物理学报, 2013, 62(7):413-417. LI S S, LIANG C X, WANG X X, et al.. The preparation and characteristics research of high mobility amorphous indium gallium zinc oxide thin-film transistors[J]. Acta Phys. Sinica, 2013, 62(7):413-417. (in Chinese)
NAKATA M, ZHAO C M, KANICKI J. DC sputtered amorphous In-Sn-Zn-O thin-film transistors:electrical properties and stability[J]. Solid-State Electron., 2016, 116:22-29.
凯根, 安瑞. 薄膜晶体管及其在平板显示中的应用[M]. 北京:电子工业出版社, 2008. CHERIE R K, PAUL A. Thin Film Transistors[M]. Beijing:Publishing House of Electronics Industry, 2008. (in Chinese)
LU Y B, YANG T L, LING Z C, et al.. How does the multiple constituent affect the carrier generation and charge transport in multicomponent TCOs of In-Zn-Sn oxide[J]. J. Mater. Chem. C, 2015, 3(29):7727-7737.
NGUYEN C P T, TRINH T T, RAJA J, et al.. Source/drain metallization effects on the specific contact resistance of indium tin zinc oxide thin film transistors[J]. Mater. Sci. Semicond. Proc., 2015, 39:649-653.
KIM C E, YUN I. Effects of nitrogen doping on device characteristics of InSnO thin film transistor[J]. Appl. Phys. Lett., 2012, 100(1):13501.
刘媛媛, 童杨, 王雪霞, 等. 氧分压对铟镓锌氧化物薄膜晶体管性能的影响[J]. 人工晶体学报, 2014, 43(12):3108-3112. LIU Y Y, TONG Y, WANG X X, et al.. Effect of the oxygen partial pressure on properties of indium gallium zinc oxide thin film transistors[J]. J. Synth. Cryst., 2014, 43(12):3108-3112. (in Chinese)
GAVARTIN J L, SHLUGER A L, FOSTER A S, et al.. The role of nitrogen-related defects in high-k dielectric oxides:density-functional studies[J]. J. Appl. Phys., 2005, 97(5):53704.
JEONG J K, YANG H W, JEONG J H, et al.. Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors[J]. Appl. Phys. Lett., 2008, 93(12):123508.
李民. 金属氧化物薄膜晶体管器件的稳定性研究[D]. 广州:华南理工大学, 2014. LI M. Stability of Metal-oxide Thin Film Transistors[D]. Guangzhou:South China University of Technology, 2014. (in Chinese)
XIE H T, WU Q, XU L, et al.. Nitrogen-doped amorphous oxide semiconductor thin film transistors with double-stacked channel layers[J]. Appl. Surf. Sci., 2016, 387:237-243.