浏览全部资源
扫码关注微信
内蒙古民族大学 物理与电子信息学院,内蒙古 通辽,028000
Received:15 August 2017,
Revised:30 September 2017,
Published:05 December 2017
移动端阅览
王伟华, 卜祥天,. 氧化石墨烯纳米带能带结构和态密度的第一性原理研究[J]. 发光学报, 2017,38(12): 1617-1621
WANG Wei-hua, BU Xiang-tian,. Energy Band Structure and Density of States of Graphene Oxide Nanoribbons:The First Principle Calculations[J]. Chinese Journal of Luminescence, 2017,38(12): 1617-1621
王伟华, 卜祥天,. 氧化石墨烯纳米带能带结构和态密度的第一性原理研究[J]. 发光学报, 2017,38(12): 1617-1621 DOI: 10.3788/fgxb20173812.1617.
WANG Wei-hua, BU Xiang-tian,. Energy Band Structure and Density of States of Graphene Oxide Nanoribbons:The First Principle Calculations[J]. Chinese Journal of Luminescence, 2017,38(12): 1617-1621 DOI: 10.3788/fgxb20173812.1617.
基于密度泛函理论,采用第一性原理方法,计算了氧化石墨烯纳米带的电荷密度、能带结构和分波态密度。结果表明,石墨烯纳米带被氧化后,转变为间接带隙半导体,带隙值为0.375 eV。电荷差分密度表明,从C原子和H原子到O原子之间有电荷的转移。分波态密度显示,在导带和价带中C-2s、2p,O-2p,H-1s电子态之间存在强烈的杂化效应。在费米能级附近,O-2p态电子局域效应的贡献明显,对于改善氧化石墨烯纳米带的半导体发光效应起到了主要作用。
The charge density
energy band structure
density of states and project density of states of graphene oxide nanoribbons were investigated using the first principle calculations based on density functional theory. The results indicate that the graphene oxide nanoribbons are an indirect band gap semiconductor with an energy gap of 0.375 eV. The charge density is transferred among C
O and H atoms. The project density of states show that the localization and hybridization between C-2s
2p
O-2p
H-1s electronic states are induced in the conduction band and valence band. The localization is induced by O-2p electronic states at Fermi level. It plays a major role in improving the semiconductor luminescence effect of graphene oxide nanoribbons.
SRIVASTAVA P, DHAR S, JAISWAL N K. Potential spin-polarized transport in gold-doped armchair graphene nanoribbons[J]. Phys. Lett. A, 2015, 379(9):835-842.
LIU J, KIM G H, XUE Y, et al.. Graphene oxide nanoribbon as hole extraction layer to enhance efficiency and stability of polymer solar cells[J]. Adv. Mater., 2014, 26(5):786-790.
HIGGINBOTHAM A L, KOSYNKIN D V, SINITSKⅡ A, et al.. Tour, lower-defect graphene oxide nanoribbons from multiwalled carbon nanotubes[J]. ACS Nano, 2010, 4(4):2059-2069.
JIA X T, CAMPOS D,TERRONES M, et al.. Graphene edges:a review of their fabrication and characterization[J]. Nanoscale, 2011, 3(1):86-95.
YAN Q, HUANG B, YU J, et al.. Intrinsic current-voltage characteristics of graphene nanoribbon transistors and effect of edge doping[J]. Nano Lett., 2007, 7(6):1469.
YU S S, ZHENG W T, WEN Q B, et al.. First principle calculations of the electronic properties of nitrogen-doped carbon nanoribbons with zigzag edges[J]. Carbon, 2008, 46(3):537-543.
CHEN L N, OUYANG F P, MA S S, et al.. First-principles investigation on B/N co-doping of metallic carbon nanotubes[J]. Phys. Lett. A, 2010, 374(42):4343-4348.
LIN Q, CHEN Y X, WU J B. N type doping of zigzag graphene nanobelts, band structure and transport properties of influence[J]. J. Phys., 2011, 60(9):000554.
KALOSAKAS G, LATHIOTAKIS N N, GALIOTIS C, et al.. In-plane force fields and elastic properties of graphene[J]. J. Appl. Phys., 2013, 113:134307.
MARTN A, BATALLA P, HERNNDEZ-FERRER J, et al.. Graphene oxide nanoribbon-based sensors for the simultaneous bio-electrochemical enantiomeric resolution and analysis of amino acid biomarkers[J]. Biosens. Bioelectron., 2015, 68:163-167.
ZHU P, CRUZ-SILVA E, MEUNIER V. Electronic transport properties in graphene oxide frameworks[J]. Phys. Rev. B, 2014, 89(8):6013.
DELLEY B. An all-electron numerical method for solving the local density functional for polyatomic molecules[J]. J. Chem. Phys., 1990, 92(1):508-517.
LIU X H, WANG J W, LIU Y, et al.. In situ, transmission electron microscopy of electrochemical lithiation, delithiation and deformation of individual graphene nanoribbons[J]. Carbon, 2012, 50(10):3836-3844.
GIANNOZZI P, BARONI S, BONINI N, et al.. Quantum espresso:a modular and open-source software project for quantum simulations of materials[J]. J. Phys. Condens. Matter, 2009, 21:395502.
DAI J, GIANNOZZI P, YUAN J. Adsorption of pairs of NOx, molecules on single-walled carbon nanotubes and formation of NO+NO3, from NO2[J]. Surf. Sci., 2009, 603(21):3234-3238.
DAI J, HOU Y, YUAN J. Unified first principles description from warm dense matter to ideal ionized gas plasma:electron-ion collisions induced friction[J]. Phys. Rev. Lett., 2010, 104(24):245001.
WANG W, ZHAO G. First principles study of the electronic energy bands and state density of lithium-doped narrow armchair graphene nanoribbons[J]. Solid States Commun., 2013,166:6-11.
0
Views
699
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution