浏览全部资源
扫码关注微信
发光学及应用国家重点实验室 中国科学院长春光学精密机械与物理研究所,吉林 长春,130033
Received:20 June 2017,
Revised:25 July 2017,
Published:05 December 2017
移动端阅览
刘春旭, 张继森, 陈泳屹等. CsPbBr<sub>3</sub>钙钛矿/Pt杂化纳米结构中等离激元-激子耦合引起的发光猝灭和辐射速率减小[J]. 发光学报, 2017,38(12): 1597-1604
LIU Chun-xu, ZHANG Ji-sen, CHEN Yong-yi etc. Luminescence Lifetime Enhanced by Exciton-plasmon Couple in Hybrid CsPbBr<sub>3</sub> Perovskite/Pt Nanostructure[J]. Chinese Journal of Luminescence, 2017,38(12): 1597-1604
刘春旭, 张继森, 陈泳屹等. CsPbBr<sub>3</sub>钙钛矿/Pt杂化纳米结构中等离激元-激子耦合引起的发光猝灭和辐射速率减小[J]. 发光学报, 2017,38(12): 1597-1604 DOI: 10.3788/fgxb20173812.1597.
LIU Chun-xu, ZHANG Ji-sen, CHEN Yong-yi etc. Luminescence Lifetime Enhanced by Exciton-plasmon Couple in Hybrid CsPbBr<sub>3</sub> Perovskite/Pt Nanostructure[J]. Chinese Journal of Luminescence, 2017,38(12): 1597-1604 DOI: 10.3788/fgxb20173812.1597.
研究了半导体纳米粒子(SNPs)-金属纳米颗粒(MNPs)耦合导致的SNPs的发光强度猝灭和荧光寿命增强潜在的物理机制,并用传统F ster共振能量传递(FRET)理论描述和分析实验结果。光致发光光谱(PL)和时间分辨光谱观测表明,SNPs的PL强度发生了明显的猝灭,荧光寿命从17.7 ns到30.8 ns延长了近2倍。这种杂化纳米结构表现出不同于杂化前各独立组分的新的协同相互作用光学性质。胶体化学使杂化SNP
S
-MNP纳米结构中SNP
S
和MNP构成一个新的单元称为等离激子激元(Plexciton)或激子等离子激元(Excimon),这已在一系列杂化结构中被确认。基于泵浦-探测技术的飞秒瞬态吸收(TA)的实验结果证实了这种从激子-等离激元到等离激子的转换。实验结果分析表明,传统F ster共振能量传递理论不能很好地描述实验结果,在金属存在的情况下,还需要对该理论进一步调整和改进。
The mechanism of photoluminescence (PL) quenched and lifetime enhanced by semiconductor nanoparticles (SNPs)-metal nanoparticles (MNPs) couple were investigated and the experimental results have been described and analyzed by the conventional Fster resonance energy transfer (FRET). The plasmonically coupled SNPs have demonstrated the PL quenched obviously and lifetime enhanced from 17.7 ns to 30.8 ns
near to 2 times. The hybrid colloidal CsPbBr
3
perovskite SNPs/Pt MNPs (S-M) structures exhibit novel optical properties due to the synergetic interaction between the individual components. In hybrid S-M nanostructures
colloidal chemistry incorporates SNP and MNP into a single unit resulting in the formation of plexciton (or excimon) which has now been established in a series of hybrid structures. The experimental results of femtosecond transient absorption (TA) spectroscopy based on the time-resolved pump-probe confirm the transformation from excitons to plexcitons. It was found that the experimental data can't be well described by the theory based on conventional FRET. To modify and improve the conventional FRET is needed.
ZHOU N, YUAN M, GAO Y, et al.. Silver nanoshell plasmonically controlled emission of semiconductor quantum dots in the strong coupling regime[J]. ACS Nano, 2016, 10:4154-4163.
TAM F, GOODRICH G P, JOHNSON B R, et al.. Plasmonic enhancement of molecular fluorescence[J]. Nano Lett., 2007, 7(2):496-501.
VASA P, POMRAENKE R, SCHWIEGER S, et al.. Coherent exciton surface plasmon polariton interaction in hybrid metal-semiconductor nanostructures[J]. Phys. Rev. Lett., 2008; 101:116801.
DREXHAGE K. Influence of a dielectric interface on fluorescence decay time[J]. J. Lumin., 1970, 1-2:693-701.
PELTON M. Modified spontaneous emission in nanophotonic structures[J]. Nat. Photon., 2015, 9:427-435.
CHAN Y H, CHEN J, WARK S E, et al.. Using patterned arrays of metal nanoparticles to probe plasmon enhanced luminescence of CdSe quantum dots[J]. ACS Nano, 2009, 3(7):1735-1744.
MOSKOVITS M. Surface-enhanced spectroscopy[J]. Rev. Mod. Phys., 1985, 57(3):783-826.
PONS T, MEDIETZ I L, SAPSFOR K E, et al.. On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles[J]. Nano Lett., 2007, 7(10):3157-3164.
DULKEITH E, MORTEANI A C, NIEDEREICHHOLZ T, et al.. Fluorescence quenching of dye molecules near gold nanoparticles:radiative and nonradiative effects[J]. Phys. Rev. Lett., 2002, 89:203002.
ZhANG X, MAROCICO C A, MANUELA L, et al.. Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled frster resonance energy transfer[J]. ACS Nano, 2014, 8(2):1273-1283.
STOUMPOS C C, MALLIAKAS C D, PETERS J A, et al.. Crystal growth of the perovskite semiconductor CsPbBr3:a new material for high-energy radiation detection[J]. Cryst. Growth Des., 2013, 13(7):2722-2727.
GOVOROV A O, BRYANT G W, ZHANG W, et al.. Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies[J]. Nano Lett., 2006, 6(5):984-994.
CHENG M T, LIU S D, ZHOU H J, et al.. Coherent exciton-plasmon interaction in the hybrid semiconductor quantum dot and metal nanoparticle complex[J]. Opt. Lett., 2007, 32(15):2125-2127.
SINGH M P, STROUSE G F. Involvement of the LSPR spectral overlap for energy transfer between a dye and Au nanoparticle[J]. J. Am. Chem. Soc., 2010, 132(27):9383-9391.
LAKOWICZ J R. Radiative decay engineering 5:metal-enhanced fluorescence and plasmon emission[J]. Anal. Biochem., 2005, 337:171-194.
VISTE P, PLAIN J, JAFFIOL R, et al.. Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources[J]. ACS Nano, 2010, 4(2):759-764.
SCOTT L, EVGENⅡA B, NATALIA R, et al.. Enhanced lifetime of excitons in nonepitaxial Au/CdS core/shell nanocrystals[J]. ACS Nano, 2014, 8(1):352-361.
OSBORNE SM, PIKRAMENOU Z. Highly luminescent gold nanoparticles:effect of ruthenium distance for nanoprobes with enhanced lifetimes[J]. Faraday Discuss, 2015, 185:219-231.
DULKEITH E, RINGLER M, KLAR T A, et al.. Gold nanoparticles quench fluorescence by phase induced radiative rate suppression[J]. Nano Lett., 2005, 5(4):585-589.
KWON S H, KANG J H, SEASSAL C, et al.. Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity[J]. Nano Lett., 2010, 10(9):3679-3683.
MIZAIKOFF B. Waveguide-enhanced mid-infrared chem/bio sensors[J]. Chem. Soc. Rev., 2013, 42:8683-8699.
SCHULLER J A, BARNARD E S, CAI W, et al.. Plasmonics for extreme light concentration and manipulation[J]. Nat. Mater., 2010, 9(2):193-204.
ANKER J N, HALL W P, LYANDRES O, et al.. Biosensing with plasmonic nanosensors[J]. Nat. Mater., 2008, 7(6):442-453.
GREEN MA, PILLAI S. Harnessing plasmonics for solar cells[J]. Nat. Photon., 2012, 6(3):130-132.
LI X, WU Y, ZHANG S, et al.. CsPbX3 quantum dots for lighting and displays:room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes[J]. Adv. Funct. Mater., 2016, 109:1-11.
KE G, ZENG Y, DAVID F K. Extinction coefficients, oscillator strengths, and radiative lifetimes of CdSe, CdTe, and CdTe/CdSe nanocrystals[J]. J. Phys. Chem. C, 2013, 117(39):20268-20279.
LI Y Q, LI Q, ZHANG Z G, et al.. Time-resolved photoluminescence spectroscopy of exciton-plasmon coupling dynamics[J]. Plasmonics, 2015, 10:271-280.
ROHNERO C, TAVERNARO I, CHEN L, et al.. Metal-enhanced luminescence in colloidal solutions of CdSe and metal nanoparticles:investigation of density dependence and optical band overlap[J]. Phys. Chem. Chem. Phys., 2015, 17:5932-5941.
LAKOWICZ J R. Principles of Fluorescence Spectroscopy[M], Singapore:Springer, 2006.
DRAGAN A I, GEDDES C D. Metal-enhanced fluorescence:the role of quantum yield, Q0, in enhanced fluorescence[J]. Appl. Phys. Lett., 2012, 100:093115.
LAKOWICZ J R. Radiative decay engineering:biophysical and biomedical applications[J]. Anal. Biochem., 2001, 298(1):1-24.
HAYAKAWA T, SELVAN S T, NOGAMI M. Field enhancement effect of small Ag particles on the fluorescence from Eu3+-doped SiO2 glass[J]. Appl. Phys. Lett., 1999, 74:1513-1515.
SELVAN S T, HAYAKAWA T, NOGAMI M. Remarkable influence of silver islands on the enhancement of fluorescence from Eu3+ ion-doped silica gels[J]. J. Phys. Chem. B, 1999, 103(34):7064-7067.
WANG C S, LIN H Y, LIN J M, et al.. Surface-plasmon-enhanced ultraviolet random lasing from ZnO nanowires assisted by Pt nanoparticles[J]. Appl. Phys. Express, 2012, 5(6):062003.
VISTE P, PLAIN J, JAFFIOL R, et al.. Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources[J]. ACS Nano, 2010, 4(2):759-764.
ACHERMANN M. Exciton-plasmon interactions in metal-semiconductor nanostructures[J]. J. Phys. Chem. Lett., 2010, 1(19):2837-2843.
KHON E, MERESHCHENKO A, TARNOVSKY A N, et al.. Suppression of the plasmon resonance in Au/CdS colloidal nanocomposites[J]. Nano Lett., 2011, 11(4):1792-1799.
MELNIKAU D, ESTEBAN R, SAVATEEVA D, et al.. Rabi splitting in photoluminescence spectra of hybrid systems of gold nanorods and J-Aggregates[J]. J. Phys. Chem. Lett., 2016, 7(2):354-362.
BALCI S, KOCABAS C. Ultra hybrid plasmonics:strong coupling of plexcitons with plasmon polaritons[J]. Opt. Lett., 2015, 40(14):3424-3427.
VASA P, LIENAU C. An unusual marriage:coupling molecular excitons to surface plasmon polaritons in metal nanostructures[J]. Angew Chem. Int. Ed., 2010, 49(14):2476-2477.
WONG J I, MISHRA N, XING G, et al.. Dual wavelength electroluminescence from CdSe/CdS tetrapods[J]. ACS Nano, 2014, 8(3):2873-2879.
LIU S, BORYS N J, HUANG J, et al.. Exciton storage in CdSe/CdS tetrapod semiconductor nanocrystals:electric field effects on exciton and multiexciton states[J]. Phys. Rev. B, 2012, 86:045303.
MAUSER C, DA COMO E, BALDAUF J, et al.. Spatio-temporal dynamics of coupled electrons and holes in nanosize CdSe-CdS semiconductor tetrapods[J]. Phys. Rev. B, 2010, 82:081306.
0
Views
290
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution