LIU Dong-yang, YU Zeng-chao, HU Fan etc. Sterilizing Effect of UVC with Pr<sup>3+</sup> Doped Y<sub>2</sub>SiO<sub>5</sub> Under The Sunlight[J]. Chinese Journal of Luminescence, 2017,38(12): 1591-1596
LIU Dong-yang, YU Zeng-chao, HU Fan etc. Sterilizing Effect of UVC with Pr<sup>3+</sup> Doped Y<sub>2</sub>SiO<sub>5</sub> Under The Sunlight[J]. Chinese Journal of Luminescence, 2017,38(12): 1591-1596 DOI: 10.3788/fgxb20173812.1591.
Sterilizing Effect of UVC with Pr3+ Doped Y2SiO5 Under The Sunlight
UVC (220-280 nm) up-conversion(UC) emission was achieved for the first time under the sunlight. To test UC UVC germicidal efficacy of Pr
3+
doped Y
2
SiO
5
phosphors
the verdigris pseudomonad were extracted from soil and used for the experiments. The bacteria were stained by Syto9/PI. Experiment results show that the mortality rate of bacteria adheres to UC phosphor increases markedly under sunlight radiation. It indicates that UC UVC materials can effectively kill bacterium under the sunlight.
关键词
Keywords
references
AUZEL F. Upconversion and anti-Stokes processes with f and d ions in solids[J]. Chem. Rev., 2004, 104(1):139-174.
WANG F, HAN Y, LIM C S, et al.. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping[J]. Nature, 2010, 463(7284):1061-1065.
HEER S, KMPE K, GVDEL H U, et al.. Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals[J]. Adv. Mater., 2004, 16(23-24):2102-2105.
SHEN J, ZHU Y, YANG X, et al.. One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light[J]. New J. Chem., 2012, 36(1):97-101.
SHALAV A, RICHARDS B, TRUPKE T, et al.. Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response[J]. Appl. Phys. Lett., 2005, 86(1):200-203.
WANG C, TAO H, CHENG L, et al.. Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles[J]. Biomaterials, 2011, 32(26):6145-6154.
BALDRY IK, GLAZEBROOK K. Constraints on a universal stellar initial mass function from ultraviolet to near-infrared galaxy luminosity densities[J]. Astrophys. J., 2003, 593(1):258-261.
GUO X, DI W, CHEN C, et al.. Enhanced near-infrared photocatalysis of NaYF4:Yb, Tm/Cds/TiO2 composites[J]. Dalton Trans., 2014, 43(3):1048-1054.
WANG F, LIU X. Upconversion multicolor fine-tuning:visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles[J]. J. Am. Chem. Soc., 2008, 130(17):5642-5643.
CATES EL, CHO M, KIM J H. Converting visible light into UVC:microbial inactivation by pr3+-activated upconversion materialss[J]. Environment. Sci. Technol., 2011, 45(8):3680-3686.
MENEZES S, COULOMB B, LEBRETON C, et al.. Non-coherent near infrared radiation protects normal human dermal fibroblasts from solar ultraviolet toxicity[J]. J. Investigat. Dermatol., 1998, 111(4):629-633.
ABE T. Illuminating light source device using semiconductor laser element[J]. Google Patents, 1996, 15(8):348-351.
YANG Y M, MI C, SU X Y, et al.. Ultraviolet C upconversion fluorescence of trivalent erbium in BaGd2ZnO5 phosphor excited by a visible commercial light-emitting diode[J]. Opt. Lett., 2014, 39(7):2000-2003.
CHANG J C, OSSOFF S F, LOBE D C, et al.. UV inactivation of pathogenic and indicator microorganisms[J]. Appl. Environment. Microbiol., 1985, 49(6):1361-1365.
JONES N, RAY B, RANJIT K T, et al.. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms[J]. FEMS Microbiol. Lett., 2008, 279(1):71-76.
NYK M, KUMAR R, OHULCHANSKYY T Y, et al.. High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors[J]. Nano Lett., 2008, 8(11):3834-3838.
WANG F, BANERJEE D, LIU Y, et al.. Upconversion nanoparticles in biological labeling, imaging, and therapy[J]. Analyst, 2010, 135(8):1839-1854.
CHOI K H, KUMAR A, SCHWEIZER H P. A 10-min method for preparation of highly electrocompetent pseudomonas aeruginosa cells:application for DNA fragment transfer between chromosomes and plasmid transformation[J]. J. Microbiol. Methods, 2006, 64(3):391-397.
LAM J, CHAN R, LAM K, et al.. Production of mucoid microcolonies by pseudomonas aeruginosa within infected lungs in cystic fibrosis[J]. Infection Immunity, 1980, 28(2):546-556.
LEHTINEN J, NUUTILA J, LILIUS E M. Green fluorescent protein-propidium iodide based assay for flow cytometric measurement of bacterial viability[J]. Cytometry Part A, 2004, 60(2):165-172.
AZEVEDO N, PACHECO A, KEEVIL C, et al.. Adhesion of water stressed helicobacter pylori to abiotic surfaces[J]. J. Appl. Microbiol., 2006, 101(3):718-724.
WU J, SONG Y, HAN B, et al.. Synthesis and characterization of uv upconversion materials Y2SiO5:Pr3+, Li+/TiO2 with enhanced the photocatalytic properties under a xenon lamp[J]. RSC Adv., 2015, 5(61):49356-49362.
KANG H, KANG Y, PARK H, et al.. Y2SiO5:Tb phosphor particles prepared from colloidal and aqueous solutions by spray pyrolysis[J]. Appl. Phys. A:Mater. Sci. Proc., 2005, 80(2):347-351.
CATES S L, CATES E L, CHO M, et al.. Synthesis and characterization of visible-to-UVC upconversion antimicrobial ceramics[J]. Environment. Sci. Technol., 2014, 48(4):2290-2297.
MITU B, VIZIREANU S, BIRJEGA R, et al.. Comparative properties of ternary oxides of ZrO2-TiO2-Y2O3 obtained by laser ablation, magnetron sputtering and sol-gel techniques[J]. Thin Solid Films, 2007, 515(16):6484-6488.
SUN C, LI J, HU C, et al.. Ultraviolet upconversion in pr3+:Y2SiO5 crystal by laser (488 nm) excitation[J]. Eur. Phys. J.:Atom., Mol., Opt. Plasma Phys., 2006, 39(2):303-306.
LI C, LIU X, YANG P, et al.. LaF3, CeF3, CeF3:Tb3+, and CeF3:Tb3+@LaF3 (core-shell) nanoplates:hydrothermal synthesis and luminescence properties[J]. J. Phys. Chem. C, 2008, 112(8):2904-2910.
SAHA S, CHOWDHURY P S, PATRA A. Luminescence of Ce3+ in Y2SiO5 nanocrystals:role of crystal structure and crystal size[J]. J. Phys. Chem. B, 2005, 109(7):2699-2702.
ANTONIO-GUTIERREZ O, LOPEZ-MALO A, RAMIREZ-CORONA N, et al.. Enhancement of UVC-light treatment of tangerine and grapefruit juices through ultrasonic atomization[J]. Innov. Food Sci. Emerg. Technol., 2017, 39(7):356-359.
HEFFERNAN T P, SIMPSON D A, FRANK A R, et al.. An atr dependents checkpoint inhibits replicon initiation following UVC-induced DNA damage[J]. Mo. Cell. Biol., 2002, 22(24):8552-8561.
FUNAI D H, DIDIER F, GIMNEZ J, et al.. Photo-fenton treatment of valproate under UVC, UVA and simulated solar radiation[J]. J. Hazard. Mater., 2017, 98(37):545-549.
KIM D K, KIM S J, KANG D H. Bactericidal effect of 266 to 279 nm wavelength UVC-LEDs for inactivation of gram positive and gram negative foodborne pathogenic bacteria and yeasts[J]. Food Res. Int., 2017, 47(26):271-274.
VELO-GALA I, PIRN-MONTAO J, RIVERA-UTRILLA J, et al.. Advanced oxidation processes based on the use of UVC and simulated solar radiation to remove the antibiotic tinidazole from water[J]. Chem. Eng. J., 2017, 40(16):252-255.