JIANG Jie, LI Shi-hao, YAN Yi-nan etc. Preparation of N-doped Fluorescent Carbon Dots with High Quantum Yield for <em>In-vitro</em> Bioimaging[J]. Chinese Journal of Luminescence, 2017,38(12): 1567-1574
JIANG Jie, LI Shi-hao, YAN Yi-nan etc. Preparation of N-doped Fluorescent Carbon Dots with High Quantum Yield for <em>In-vitro</em> Bioimaging[J]. Chinese Journal of Luminescence, 2017,38(12): 1567-1574 DOI: 10.3788/fgxb20173812.1567.
Preparation of N-doped Fluorescent Carbon Dots with High Quantum Yield for In-vitro Bioimaging
In order to obtain carbon dots with high quantum yield
a simple two-step solvothermal method was used to prepare fluorescent N-doped carbon dots with citric acid as carbon source and three isomers of phenylenediamine as nitrogen source. The carbon dots were characterized by Transmission electron microscopy (TEM)
ultraviolet-visible spectrophotometry (UV-Vis)
fluorescence spectrophotometry
Fourier transform infrared spectra (FTIR)
X-ray photoelectron spectroscopy (XPS)
followed by studying the cytotoxicity and
in-vitro
bioimaging. The results show that three kinds of high quantum yield carbon dots (
Y
=52%
60.4% and 53.2%) possessing uniform size and excellent dispersibility have been successfully prepared
and the average size is 4.5
5.3
5.2 nm. The prepared carbon dots with hydroxyl
carboxyl
amine and other groups on the surface can emit bright blue fluorescence under the excitation of ultraviolet light
holding favorable optical stability at the same time. In addition
the cell imaging experiments indicate that the three kinds of carbon dots have good biocompatibility
capable of rapidly entering cells and successfully applied to fluorescence imaging of cells.
关键词
Keywords
references
PRATO M. Fullerene chemistry for materials science applications[J]. J. Mater. Chem., 1997, 7(7):1097-1109.
YANG S T, CAO L, LUO P G, et al.. Carbon dots for optical imaging in vivo[J]. J. Am. Chem. Soc., 2009, 131(32):11308-11309.
娄庆, 曲松楠. 基于超级碳点的水致荧光"纳米炸弹"[J]. 中国光学, 2015, 8(1):91-98. LOU Q, QU S N. Water triggered luminescent nano-bombs based on supra-carbon-nanodots[J]. Chin. Opt., 2015, 8(1):91-98. (in Chinese)
XU X, RAY R, GU Y, et al.. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. J. Am. Chem. Soc., 2004, 126(40):12736-12737.
SUN Y P, ZHOU B, LIN Y, et al.. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. J. Am. Chem. Soc., 2006, 128(24):7756-7757.
WANG W, LI Y M, CHENG L, et al.. Correction:water-soluble and phosphorus-containing carbon dots with strong green fluorescence for cell labeling[J]. J. Mater. Chem. B, 2013, 2(1):46-48.
ZHUO Y, MIAO H, ZHONG D, et al.. One-step synthesis of high quantum-yield and excitation-independent emission carbon dots for cell imaging[J]. Mater. Lett., 2015, 139:197-200.
WANG X, CAO L, YANG S T, et al.. Bandgap-like strong fluorescence in functionalized carbon nanoparticles[J]. Angew. Chem. Int. Ed., 2010, 49(31):5310-5314.
CAO L, SAHU S, ANILKUMAR P, et al.. Carbon nanoparticles as visible-light photocatalysts for efficient CO2 conversion and beyond[J]. J. Am. Chem. Soc., 2011, 133(13):4754-4757.
WANG Q L, HUANG X X, LONG Y J, et al.. Hollow luminescent carbon dots for drug delivery[J]. Carbon, 2013, 59:192-199.
LIM S Y, SHEN W, GAO Z. Carbon quantum dots and their applications[J]. Chem. Soc. Rev., 2015, 44(1):362-381.
ZHAO H X, LIU L Q, LIU Z D, et al.. Highly selective detection of phosphate in very complicated matrixes with an off-on fluorescent probe of europium-adjusted carbon dots[J]. Chem. Commun., 2011, 47(9):2604-2606.
DMITRI V T, ANDREY L R, KORNOWAKI A, et al.. Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture[J]. Nano Lett., 2001, 1(4):207-211.
LIU P P, ZHANG C C, LIU X, et al.. Preparation of carbon quantum dots with a high quantum yield and the application in labeling bovine serum albumin[J]. Appl. Surf. Sci., 2016, 368:122-128.
DONG Y Q, SHAO J W, CHEN C Q, et al.. Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid[J]. Carbon, 2012, 50(12):4738-4743.
ZHANG Y, CUI P P, ZHANG F, et al.. Fluorescent probes for "off-on" highly sensitive detection of Hg2+ and L-cysteine based on nitrogen-doped carbon dots[J]. Talanta, 2016, 152:288-300.
ZHU S J, MENG Q N, WANG L, et al.. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging[J]. Angew. Chem. Int. Ed., 2013, 52(14):3953-3957.
HU Y, YANG J, TIAN J, et al.. Waste frying oil as a precursor for one-step synthesis of sulfur-doped carbon dots with pH-sensitive photoluminescence[J]. Carbon, 2014, 77:775-782.
QU S N, WANG X Y, LU Q P, et al.. A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots[J]. Angew. Chem. Int. Ed., 2012, 51(49):123821-12384.
ZHAI X, ZHANG P, LIU C, et al.. Highly luminescent carbon nanodots by microwave-assisted pyrolysis[J]. Chem. Commun., 2012, 48(64):7955-7957.
PARAKNOWITSCH J P, ZHANG Y, WIENERT B, et al.. Nitrogen-and phosphorus-co-doped carbons with tunable enhanced surface areas promoted by the doping additives[J]. Chem. Commun., 2012, 49(12):1208-1210.
王子儒, 张光华, 郭明媛. N掺杂碳量子点光稳定剂的制备及光学性能[J]. 发光学报, 2016, 37(6):655-661. WANG Z R, ZHANG G H, GUO M Y. Preparation and optical properties of N-doped carbon dots as light stabilizer[J]. Chin. J. Lumin., 2016, 37(6):655-661. (in Chinese)
LI X, ZHU G, XU Z. Nitrogen-doped carbon nanotube arrays grown on graphene substrate[J]. Thin Solid Films, 1959, 520(6):1959-1964.
YANG Z, XU M, LIU Y, et al.. Nitrogen-doped, carbon-rich, highly photoluminescent carbon dots from ammonium citrate[J]. Nanoscale, 2014, 6(3):1890-1895.
LIU R, WU D, LIU S, et al.. An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers[J]. Angew. Chem. Int. Ed., 2009, 48(25):4598-4601.
HEDI M, J M M, ELLEN R G, et al.. Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein[J]. J. Am. Chem. Soc., 2000, 122(122):12142-12150.