浏览全部资源
扫码关注微信
1. 西南科技大学极端条件物质特性实验室,四川 绵阳,621010
2. 西南科技大学四川省特殊环境机器人技术重点实验室,四川 绵阳,621010
Received:14 March 2017,
Revised:18 April 2017,
Published Online:07 July 2017,
Published:05 November 2017
移动端阅览
王慧丽, 王建伟, 周强等. 激光诱导击穿光谱法定量分析水泥中的铜元素[J]. 发光学报, 2017,38(11): 1553-1558
WANG Hui-li, WANG Jian-wei, ZHOU Qiang etc. Quantitative Analysis of Cu in Cement by Laser Induced Breakdown Spectroscopy[J]. Chinese Journal of Luminescence, 2017,38(11): 1553-1558
王慧丽, 王建伟, 周强等. 激光诱导击穿光谱法定量分析水泥中的铜元素[J]. 发光学报, 2017,38(11): 1553-1558 DOI: 10.3788/fgxb20173811.1553.
WANG Hui-li, WANG Jian-wei, ZHOU Qiang etc. Quantitative Analysis of Cu in Cement by Laser Induced Breakdown Spectroscopy[J]. Chinese Journal of Luminescence, 2017,38(11): 1553-1558 DOI: 10.3788/fgxb20173811.1553.
为定量分析水泥中的铜(Cu)元素,根据激光诱导击穿光谱分析方法(LlBS)的特点,建立了激光诱导击穿光谱分析系统。采用标准加入法为定标方法,制备了5个不同含铜量的水泥样品。根据LIBS谱图,以213.598 nm和219.958 nm作为分析线。应用Savitzky-Golary卷积平滑方法对光谱数据进行了预处理,比较了Guass、Lorentz和Voigt拟合方法对光谱曲线的拟合效果。对测量结果采用一元线性拟合建立了相应的定标曲线,213.598 nm和219.958 nm定标曲线的校正决定系数分别为0.994 8和0.986 4,平均相对误差分别为3.20%和5.78%。实验结果表明:213.598 nm作为分析线的准确度优于219.958 nm分析线,该方法能够满足水泥中Cu元素定量分析的要求。
In order to detect copper in the cement quantitatively
on the basis of the characteristics of laser induced breakdown spectroscopy method
the laser induced breakdown spectroscopy system was set up. The standard addition method for the calibration method was adopted and five samples of cement containing different content of copper were made. According to the LIBS spectra
213.598 nm and 219.958 nm were chosen as analysis lines. The spectrum data were preprocessed by Savitzky-Golary convolution smoothing method
and the fitting curves by Guass
Lorentz and Voigt fitting were compared. The calibration curves were set up by single variable linear fitting method. The Adjust R-Square of calibration curves of 213.598 nm and 219.958 nm are 0.994 8 and 0.986 4 respectively and the average relative errors are 3.20% and 5.78%. The results show that the accuracy of 213.598 nm as the analysis line is better than 213.598 nm for copper detection. This technique is reasonable to quantitatively analysis the metal elements in the cement by LIBS.
WERITZ F, SCHAURICH D, WILSCH G. Laser induced breakdown spectroscopy as a tool for the characterization and sorting of concrete waste material in view of high-order re-use[C]. International Symposium of Non-Destructive Testing in Civil Engineering, Berlin, Germany, 2003.
WERITZ F, SCHAURICH D, TAFFE A, et al.. Effect of heterogeneity on the quantitative determination of trace elements in concrete[J]. Anal. Bioanal. Chem. 2006, 385:248-255.
WERITZ F, SCHAURICH D, WILSCH G. Detector comparison for sulfur and chlorine detection with laser induced breakdown spectroscopy in the near-infrared-region[J]. Spectrochim. Acta:Part B, 2007, 62:1504-1511.
BURAKOV V, KIRIS V, RAIKOV S. Optimization of conditions for spectral determination of chlorine content in cement-based materials[J]. J. Appl. Spectrom., 2007, 74:321-327.
LABUTIN T A, POPOV A M, ZAYTSEV S M, et al.. Determination of chlorine, Sulfur and carbon in reinforced concrete structures by double pulse laser-induced breakdown spectroscopy[J]. Spectrochim. Acta:Part B, 2014, 99:94-100.
GEHLEN C D, WIENS E, NOLL R. Chlorine detection in cement with laser-induced breakdown spectroscopy in the infrared and ultraviolet spectral range[J]. Spectrochim. Acta:Part B, 2009, 64(10):1135-1140.
GONDAL M A, YAMANI Z H, HUSSAIN T, et al.. Determination of chloride content in different types of cement using laser-induced breakdown spectroscopy[J]. Spectrosc. Lett., 2009, 42(4):171-177
SAVIJIA B, SCHLANGEN E, PACHECO J, et al.. Chloride ingress in cracked concrete:a laser induced breakdown spectroscopy (LIBS) study[J]. J. Adv. Concrete Technol., 2014, 12(10):425-442.
WILSCH G, EICHLER T, MILLAR S, et al.. Quantitative determination of chloride-to-cement content of concrete by laser-induced breakdown spectroscopy (LIBS)[C]. Proceedings of The 10th International Conference on Creep, Shrinkage, and Durability of Concrete and Concrete Structures, Vienna, Austria, 2015.
TAEFI N, KHALAJI M, TAVASSOLI S H. Determination of elemental composition of cement powder by spark induced breakdown spectroscopy[J]. Cement Concrete Res., 2010, 40(7):1114-1119
MANSOORI A, ROSHANZADEH B, KHALAJI M, et al.. Quantitative analysis of cement powder by laser induced breakdown spectroscopy[J]. Opt. Lasers Eng., 2011, 49(3):318-323.
王明亮. 激光诱导击穿光谱(LIBS)技术在商品混凝土中的应用[D]. 北京:北京交通大学, 2011. WANG M L. Laser Induced Breakdown Spectroscopy Technique and Its Application In Concrete[D]. Beijing:Beijing Jiaotong University, 2011. (in Chinese)
王芮雯, 李占锋, 武志翔, 等. 水泥中金属元素的激光诱导击穿光谱实验条件研究[J]. 光谱学与光谱分析, 2015, 35(3):787-790. WANG R W, LI Z F, WU Z X, et al.. Experimental conditions of laser induced breakdown spectroscopy of metal elements in cement[J]. Spectrosc. Spect. Anal., 2015, 35(3):787-790. (in Chinese)
李文宏, 尚丽平, 武志翔, 等. 水泥中Al和Fe的激光诱导击穿光谱测量分析[J]. 红外与激光工程, 2015, 44(2):508-511. LI W H, SHANG L P, WU Z X, et al.. Determination of Al and Fe in cement by laser-induced breakdown spectroscopy[J]. Infrared Laser Eng., 2015, 44(2):508-511. (in Chinese)
FAN J J, ZHANG L, WANG X, et al.. Development of a laboratory cement quality analysis apparatus based on laser-induced breakdown spectroscopy[J]. Plasma Sci. Technol., 2015, 17(11):897-903.
郭锐, 张雷, 樊娟娟, 等. 基于激光诱导击穿光谱的化验室水泥质量检测设备研制[J]. 光谱学与光谱分析, 2016, 36(7):2249-2254. GUO R, ZHANG L, FAN J J, et al.. Development of a laboratory cement quality analysis apparatus based on laser-induced breakdown spectroscopy[J]. Spectrosc. Spect. Anal., 2016, 36(7):2249-2254. (in Chinese)
李郁芳, 张雷, 弓瑶, 等. 水泥生料品质激光在线检测设备研制[J]. 光谱学与光谱分析, 2016, 36(5):1494-1499. LI Y F, ZHANG L, GONG Y, et al.. Development of a laser on-line cement raw material analysis equipment[J]. Spectrosc. Spect. Anal., 2016, 36(5):1494-1499. (in Chinese)
XIA H, BAKKER M C. Reliable classification of moving waste materials with LIBS in concrete recycling[J]. Talanta, 2014, 120(120):239-247
BAKKER M C, XIA H. Laser-induced breakdown spectroscopy for identification of solid recycled materials[J]. SPIE Newsroom, 2015.
YIN H L, HOU Z Y, ZHANG L, et al.. Cement raw material quality analysis using laser-induced breakdown spectroscopy[J]. J. Anal. Atom. Spectrom., 2016, 31(12):2384-2390.
HOU Z Y, WANG Z, LUI S L, et al.. Improving data stability and prediction accuracy in laser-induced breakdown spectroscopy by utilizing a combined atomic and ionic line algorithm[J]. J. Anal. Atom. Spectrom., 2012, 28(1):107-113.
LI X, WANG Z, LUI S L, et al.. A partial least squares based spectrum normalization method for uncertainty reduction for laser induced breakdown spectroscopy measurements[J]. Spectrochim. Acta:Part B, 2013, 88(10):180-185.
SHENG L W, ZHANG T L, NIU G H, et al.. Classification of iron ores by laser-induced breakdown spectroscopy (LIBS) combined with random forest (RF)[J]. J. Anal. Atom. Spectrom., 2015, 30(2):453-458.
0
Views
169
下载量
8
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution