WANG Tao, ZHANG Xi-qing,. Fabrication and Effect of Annealing Treatment on Performance of Amorphous Mg-In-Sn-O Thin Film Transistor[J]. Chinese Journal of Luminescence, 2017,38(11): 1539-1544
WANG Tao, ZHANG Xi-qing,. Fabrication and Effect of Annealing Treatment on Performance of Amorphous Mg-In-Sn-O Thin Film Transistor[J]. Chinese Journal of Luminescence, 2017,38(11): 1539-1544 DOI: 10.3788/fgxb20173811.1539.
Fabrication and Effect of Annealing Treatment on Performance of Amorphous Mg-In-Sn-O Thin Film Transistor
/min、退火温度为750℃的MITO薄膜为非晶态,且其对应薄膜晶体管有最佳性能,其饱和迁移率为12.66 cm
2
/(Vs),阈值电压为0.8 V,开关比达到10
7
。适当的退火处理可以有效减少缺陷与界面态密度,并提高器件性能。
Abstract
In order to optimize the performance of Mg-In-Sn-O thin film transistors (MITO-TFTs)
MITO-TFTs were fabricated by radio frequency magnetron sputtering. The electrical properties on the effect of the annealing temperature and annealing ambient (O
2
flow rate) were investigated. The 750℃ annealed MITO thin film with 400 cm
3
/min O
2
flow is amorphous and the corresponding TFT shows best performance with saturation field effect mobility of 12.66 cm
2
/(Vs)
threshold voltage of 0.8 V and on/off ratio reaches 10
7
. Proper annealing will reduce defect and interface states density
improve the device performance effectively.
关键词
Keywords
references
OBA F, NISHITANI S R, ISOTANI S, et al.. Energetics of native defects in ZnO[J]. J. Appl. Phys., 2001, 90(2):824-828.
YABUTA H, SANO M, ABE K, et al.. High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering[J]. Appl. Phys. Lett., 2006, 89(11):112123.
NOMURA K, KAMIYA T, OHTA H, et al.. Local coordination structure and electronic structure of the large electron mobility amorphous oxide semiconductor In-Ga-Zn-O:experiment and ab initio calculations[J]. Phys. Rev. B, 2007, 75(3):035212.
FORTUNATO E, BARQUINHA P, PIMENTEL A, et al.. Amorphous IZO TTFTs with saturation mobilities exceeding 100 cm2/Vs[J]. Phys. Stat. Sol. (RRL), 2007, 1(1):R34-R36.
HSIEH H H, KAMIYA T, NOMURA K, et al.. Modeling of amorphous InGaZnO4 thin film transistors and their subgap density of states[J]. Appl. Phys. Lett., 2008, 92(13):133503
ERSLEV P T, CHIANG H Q, HONG D, et al.. Electronic properties of amorphous zinc tin oxide films by junction capacitance methods[J]. J. Non-cryst. Solids, 2008, 354(19):2801-2804.
CHIANG H Q, MCFARLANE B R, HONG D, et al.. Processing effects on the stability of amorphous indium gallium zinc oxide thin-film transistors[J]. J. Non-cryst. Solids, 2008, 354(19):2826-2830.
RYU M K, YANG S, PARK S H K, et al.. High performance thin film transistor with cosputtered amorphous Zn-In-Sn-O channel:combinatorial approach[J]. Appl. Phys. Lett., 2009, 95(7):072104.
CHEN A H, CAO H T, ZHANG H Z, et al.. Influence of the channel layer thickness on electrical properties of indium zinc oxide thin-film transistor[J]. Microelectron. Eng., 2010, 87(10):2019-2023.
吴崎, 许玲, 董承远. 非晶铟镓锌氧薄膜晶体管银/钛源漏电极的研究[J]. 液晶与显示, 2016, 31(4):375-379. WU Q, XU L, DONG C Y. Ag/Ti source/drain electrodes for amorphous InGaZnO thin flim transistors[J]. Chin. J. Liq. Cryst. Disp., 2016, 31(4):375-379. (in Chinese)
苟昌华, 武明珠, 郭永林, 等. 未退火InGaZnO作为缓冲层的InGaZnO薄膜晶体管性能研究[J]. 液晶与显示, 2015, 30(4):602-607. GOU C H, WU M Z, GUO Y L, et al.. Effects of using InGaZnO without annealing as buffer layer on the performance of InGaZnO thin film transistors[J]. Chin. J. Liq. Cryst. Disp., 2015, 30(4):602-607. (in Chinese)
HAYNES W M. CRC Handbook of Chemistry and Physics[M]. Boca Raton:CRC Press, 2014.
KU C J, REYES P, DUAN Z, et al.. Mg<em>xZn1-xO thin-film transistor-based UV photodetector with enhanced photoresponse[J]. J. Electron. Mater., 2015, 44(10):3471-3476.
KIM G H, JEONG W H, DUAHN B, et al.. Investigation of the effects of Mg incorporation into InZnO for high-performance and high-stability solution-processed thin film transistors[J]. Appl. Phys. Lett., 2010, 96(16):163506.
KU C J, DUAN Z, REYES P I, et al.. Effects of Mg on the electrical characteristics and thermal stability of Mg<em>xZn1-xO thin film transistors[J]. Appl. Phys. Lett., 2011, 98(12):123511.
SU B Y, CHU S Y, JUANG Y D, et al.. Effects of Mg doping on the gate bias and thermal stability of solution-processed InGaZnO thin-film transistors[J]. J. Alloys Compd., 2013, 580:10-14.
KIM H B, LEE H S. Effect of Mg addition on the electrical characteristics of solution-processed amorphous Mg-Zn-Sn-O thin film transistors[J]. Thin Solid Films, 2014, 550:504-508.
LI C H, TSAI Y S, CHEN J Z. Negative bias temperature instability of RF-sputtered Mg0. 05Zn0. 95O thin film transistors with MgO gate dielectrics[J]. Semicond. Sci. Technol., 2011, 26(10):105007.
JIANG G, LIU A, LIU G, et al.. Solution-processed high-k magnesium oxide dielectrics for low-voltage oxide thin-film transistors[J]. Appl. Phys. Lett., 2016, 109(18):183508.
KIM D C, KONG B H, AHN C H, et al.. Characteristics improvement of metalorganic chemical vapor deposition grown MgZnO films by MgO buffer layers[J]. Thin Solid Films, 2009, 518(4):1185-1189.
HUANG H Q, LIU F J, SUN J, et al.. Effect of MgO buffer layer thickness on the electrical properties of MgZnO thin film transistors fabricated by plasma assisted molecular beam epitaxy[J]. Appl. Surf. Sci., 2011, 257(24):10721-10724.
SONG C W, KIM K H, YANG J W, et al.. Effects of Mg suppressor layer on the inznsno thin-film transistors[J]. J. Semicond. Technol. Sci., 2016, 16(2):198-203.
HOSONO H, YASUKAWA M, KAWAZOE H. Novel oxide amorphous semiconductors:transparent conducting amorphous oxides[J]. J. Non-cryst. Solids, 1996, 203:334-344.
KAMIYA T, NOMURA K, HOSONO H. Origins of high mobility and low operation voltage of amorphous oxide TFTs:electronic structure, electron transport, defects and doping[J]. J. Disp. Technol., 2009, 5(7):273-288.
KAGAN, CHERIE R. Thin-film Transistors[M]. Boca Raton:CRC Press, 2003.
PARK S, BANG S, LEE S, et al.. The effect of annealing ambient on the characteristics of an indium-gallium-zinc oxide thin film transistor[J]. J. Nanosci. Nanotechnol., 2011, 11(7):6029-6033.
LEE H C, PARK O O. Behaviors of carrier concentrations and mobilities in indium-tin oxide thin films by DC magnetron sputtering at various oxygen flow rates[J]. Vacuum, 2004, 77(1):69-77.
Fabrication of Zirconia Dielectric Layer by Spin Coating and Its Application in Thin Film Transistor
Effect of Annealing Temperature on Performance of Amorphous InWO Thin Film Transistors
Influence of Annealing Temperature on Zinc-Tin-Oxide Thin Film Transistors Prepared by Sol-gel Method
Effect of Au Interlayer Annealing Temperature on Structural, Electrical and Optical Properties of ZnO/Au/ZnO Films
Upconversion Emission Properties of Tm3+/Er3+/Yb3+ Tri-doped YF3 Powders Depending on Excitation Power, Annealed Temperature and Tm3+ Concentration
Related Author
PENG Jun-biao
ZHONG Yun-xiao
ZHOU Shang-xiong
YAO Ri-hui
CAI Wei
ZHU Zhen-nan
WEI Jing-lin
XU Hai-tao
Related Institution
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Material College, South China University of Technology
College of Electronic Engineering, South China Agricultural University
Department of Electronic Engineering, Shanghai Jiao Tong University
School of Optoelectronic Information, Key Display Laboratory of Science and Technology of Sichuan, University of Electronic Science and Technology of China, Chengdu 610054, China
State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University