JIN Yu, WANG Kang, ZOU Dao-hua etc. Plasmon-cavity Polaritons Enhance The Absorption Efficiency of Top-incident Organic Thin-film Solar Cells[J]. Chinese Journal of Luminescence, 2017,38(11): 1532-1538
JIN Yu, WANG Kang, ZOU Dao-hua etc. Plasmon-cavity Polaritons Enhance The Absorption Efficiency of Top-incident Organic Thin-film Solar Cells[J]. Chinese Journal of Luminescence, 2017,38(11): 1532-1538 DOI: 10.3788/fgxb20173811.1532.
Plasmon-cavity Polaritons Enhance The Absorption Efficiency of Top-incident Organic Thin-film Solar Cells
The absorption efficiency of top-incident organic thin-film solar cells(TOSCs) was improved by employing rectangle grating structure. The coupling mechanism between the hybridized surface plasmon polariatons and microcavity modes in ideal model of air/Ag
1
/active layer/Ag
2
/air (IMIMI) structure was analyzed. By tuning the period of the grating and the thickness of the active layer
the resonance region of the hybridized surface plasmon polaritons and microcavity modes are matched with the intrinsic absorption range of the organic materials. Due to the electric field enhancement effect of plasmon-cavity polaritons formed by the anticross-coupling between the microcavity modes and the surface plasmon polaritons
the absorption efficiency of the active layer is increased obviously
exhibits a increment of 19%.
关键词
Keywords
references
KALTENBRUNNER M, WHITE M S, G?OWACKI E D, et al.. Ultrathin and lightweight organic solar cells with high flexibility[J]. Nat. Commun., 2012, 3(1):770.
HE Z, WU H, CAO Y. Recent advances in polymer solar cells:realization of high device performance by incorporating water/alcohol-soluble conjugated polymers as electrode buffer layer[J]. Adv. Mater., 2014, 26(7):1006-1024.
HUO L, LIU T, SUN X, et al.. Single-junction organic solar cells based on a novel wide-bandgap polymer with efficiency of 9.7%[J]. Adv. Mater., 2015, 27(18):2938-2944.
GREEN M A, EMERY K, HISHIKAWA Y, et al.. Solar cell efficiency tables (version 44)[J]. Prog. Photovolt:Res Appl., 2014, 22(7):701-710.
白昱, 郭晓阳, 刘星元. 利用蛾眼结构提高有机太阳能电池光吸收效率的理论研究[J]. 发光学报, 2015, 36(5):539-544. BAI Y, GUO X Y, LIU X Y. Theoretical study on the improvement of light absorption efficiency of organic solar cells by moth eye structures[J]. Chin. J. Lumin., 2015, 36(5):539-544. (in Chinese).
KIM I, LEE T S, JEONG D S, et al.. Optical design of transparent metal grids for plasmonic absorption enhancement in ultrathin organic solar cells[J]. Opt. Express, 2013, 21(S4):A669-A676.
JIN Y, FENG J, ZHANG X, et al.. Surface-plasmon enhanced absorption in organic solar cells by employing a periodically corrugated metallic electrode[J]. Appl. Phys. Lett., 2012, 101(16):163303.
LI X, REN X, XIE F, et al.. High-performance organic solar cells with broadband absorption enhancement and reliable reproducibility enabled by collective plasmonic effects[J]. Adv. Opt. Mater., 2015, 3(9):1220-1231.
JIN Y, FENG J, XU M, et al.. Matching photocurrents of sub-cells in double-junction organic solar cells via coupling between surface plasmon polaritons and microcavity modes[J]. Adv. Opt. Mater., 2013, 1(11):809-813.
XIANG C P, JIN Y, LI J. Effective absorption enhancement in small molecule organic solar cells using trapezoid gratings[J]. Chin. Phys. B, 2014, 23(3):38803.
LONG Y. Improving optical performance of inverted organic solar cells by microcavity effect[J]. Appl. Phys. Lett., 2009, 95(19):193301.
谢文法, 徐凯, 李杨, 等. 利用金属纳米颗粒改善有机光电器件性能[J]. 发光学报, 2013, 34(5):535-541. XIE W F, XU K, LI Y, et al.. High-efficiency organic photoelectric devices with metal nanoparticles[J]. Chin. J. Lumin., 2013, 34(5):535-541. (in Chinese)
GRUBER M, MAYR M, LAMPE T, et al.. Influence of molecular orientation on the coupling of surface plasmons to excitons in semitransparent inverted organic solar cells[J]. Appl. Phys. Lett., 2015, 106(8):83303.
MULLA B, SABAH C. Multiband metamaterial absorber design based on plasmonic resonances for solar energy harvesting[J]. Plasmonics, 2016, 11(5):1313-1321.
JIN Y, FENG J, ZHANG X, et al.. Broadband absorption enhancement in organic solar cells with an antenna layer through surface-plasmon mediated energy transfer[J]. Appl. Phys. Lett., 2015, 106(22):223303.
WOOLF D, LONCAR M, CAPASSO F. The forces from coupled surface plasmon polaritons in planar waveguides[J]. Opt. Express, 2009, 17(22):19996-20011.
FU L, SCHAU P, FRENNER K, et al.. Mode coupling and interaction in a plasmonic microcavity with resonant mirrors[J]. Phys. Rev. B, 2011, 84(23):235402.
WEN L, SUN F, CHEN Q. Cascading metallic gratings for broadband absorption enhancement in ultrathin plasmonic solar cells[J]. Appl. Phys. Lett., 2014, 104(15):151106.
LI J, CUSHING S K, MENG F, et al.. Plasmon-induced resonance energy transfer for solar energy conversion[J]. Nat, Photon., 2015, 9(9):601-607.
ZILIO P, SAMMITO D, ZACCO G, et al.. Light absorption enhancement in heterostructure organic solar cells through the integration of 1-D plasmonic gratings[J]. Opt. Express, 2012, 20(S4):A476-A488.
FURNO M, GATHER M C, LVSSEM B, et al.. Coupled plasmonic modes in organic planar microcavities[J]. Appl. Phys. Lett., 2012, 100(25):253301.
SCHAU P, FRENNER K, FU L, et al.. Design of high-transmission metallic meander stacks with different grating periodicities for subwavelength-imaging applications[J]. Opt. Express, 2011, 19(4):3627-3636.
BEHAGHEL B, TAMAKI R, VANDAMME N, et al.. Absorption enhancement through Fabry-Prot resonant modes in a 430 nm thick InGaAs/GaAsP multiple quantum wells solar cell[J]. Appl. Phys. Lett., 2015, 106(8):81107.
TAKAHASHI Y, TANAKA Y, HAGINO H, et al.. Higher-order resonant modes in a photonic heterostructure nanocavity[J]. Appl. Phys. Lett., 2008, 92(24):241910.
PRABHATHAN P, MURUKESHAN V M. Surface plasmon polariton-coupled waveguide back reflector in thin-film silicon solar cell[J]. Plasmonics, 2016, 11(1):253-260.
陈佳音, 刘国军, 王江安. MIM结构的SPP模式理论与仿真计算研究[J]. 发光学报, 2014, 35(6):737-741. CHEN J Y, LIU G J, WANG J A. Analysis of SPP model theory and simulation in MIM structure[J]. Chin. J. Lumin., 2014, 35(6):737-741. (in Chinese)
CHEN Z, HOOPER I R, SAMBLES J R. Strongly coupled surface plasmons on thin shallow metallic gratings[J]. Phys. Rev. B, 2008, 77(16):161405.
FU L, SCHWEIZER H, WEISS T, et al.. Optical properties of metallic meanders[J]. J. Opt. Soc. Am. B, 2009, 26(12):B111-B119.