HE Lan, FAN Guo-ying, LI Yao etc. Nonlinear Injection Model of Organic Field Effect Transistors[J]. Chinese Journal of Luminescence, 2017,38(11): 1523-1531
HE Lan, FAN Guo-ying, LI Yao etc. Nonlinear Injection Model of Organic Field Effect Transistors[J]. Chinese Journal of Luminescence, 2017,38(11): 1523-1531 DOI: 10.3788/fgxb20173811.1523.
Nonlinear Injection Model of Organic Field Effect Transistors
有机场效应晶体管(Organic field effect transistor,OFET)的非线性特性是指其输出特性曲线在较低的漏极电压下出现类似于二极管的电压电流特性曲线,这种现象在有机场效应晶体管的实验研究中极为常见。Simonetti等通过引入随栅极电压变化的迁移率提出了模型并成功解释了这一现象,但实验中从器件转移特性得出的迁移率通常与栅极电压无关。本文通过引入常数迁移率对该模型进行改进,运用改进的模型研究了影响OFET非线性特性的主要因素,并对如何更加准确地获得器件参数进行了探究。
Abstract
The nonlinear characteristic of organic field-effect transistors (OFETs) is that the output characteristic curve of an OFET at low drain voltages is similar to the current-voltage characteristic curve of a diode. And this phenomenon is very common in OFETs' studies. Simonetti
et al
. proposed a model and successfully simulated this nonlinear behavior. However
the mobility value of OFETs extracted from transfer characteristics is generally gate voltage independent. In addition
the introduction of gate voltage dependent mobility makes the model inconvenient for practical use. In this paper
we improved that model by introduction of constant mobility
that is
gate voltage independent mobility. The improved model is not only convenient for use
but also reduces the number of required input parameters for calculation. With the improved model
the output characteristic curve of the bottom contact OFETs was successfully simulated
and the main factors that influence the nonlinear characteristic of OFETs were analyzed.
关键词
Keywords
references
SIMONETTI O, GIRAUDET L, MAUREL T, et al.. Organic transistor model with nonlinear injection:effects of uneven source contact on apparent mobility and threshold voltage[J]. Org. Electron., 2010, 11(8):1381-1393.
SMITH D L, RUDEN P P. Analytic device model for light-emitting ambipolar organic semiconductor field-effect transistors[J]. Appl. Phys. Lett., 2006, 89(23):233519.
SCHLIEWE R R, YILDIRIM F A, VON EMDEN W, et al.. Static model for organic field-effect transistors including both gate-voltage-dependent mobility and depletion effect[J]. Appl. Phys. Lett., 2006, 88(23):233514.
NATALI D, FUMAGALLI L, SAMPIETRO M. Modeling of organic thin film transistors:effect of contact resistances[J]. J. Appl. Phys., 2007, 101(1):014501.
OBERHOFF D, PERNSTICH K P, GUNDLACH D J, et al.. Organic field-transistors Ⅲ[J]. SPIE, 2004, 5522:1-116.
GUPTA D, JEON N, YOO S. Modeling the electrical characteristics of TIPS-pentacene thin-film transistors:effect of contact barrier, field-dependent mobility, and traps[J]. Org. Electron., 2008, 9(6):1026-1031.
HENGEN S, ALT M, HERNANDEZ-SOSA G, et al.. Modelling and simulation of gate leakage currents of solution-processed OTFT[J]. Org. Electron., 2014, 15(3):829-834.
TORRICELLI F, GHITTORELLI M, RAPISARDA M, et al.. Unified drain-current model of complementary p-and n-type OTFTs[J]. Org. Electron., 2015, 22:5-11.
ZHANG X, GE T, CHANG J S. Fully-additive printed electronics:transistor model, process variation and fundamental circuit designs[J]. Org. Electron., 2015, 26:371-379.
LU N, LI L, BANERJEE W, et al.. Physical model of Seebeck coefficient under surface dipole effect in organic thin-film transistors[J]. Org. Electron., 2016, 29:27-32.
SCOTT J C. Metal-organic interface and charge injection in organic electronic devices[J]. J. Vac. Sci. Technol. A, 2003, 21(3):521-531.
SHEN Y, KLEIN M W, JACOBS D B, et al.. Mobility-dependent charge injection into an organic semiconductor[J]. Phys. Rev. Lett., 2001, 86(17):3867.
PENG Y Q, LV W L, YAO B, et al.. Improved performance of photosensitive field-effect transistors based on palladium phthalocyanine by utilizing Al as source and drain electrodes[J]. IEEE Trans. Electron Dev., 2013, 60(3):1208-1212.
KOMURA N, GOTO H, HE X, et al.. Characteristics of
phenacene thin film field-effect transistor[J]. Appl. Phys. Lett., 2012, 101(8):083301.
MELITZ W, SHEN J, KUMMEL A C, et al.. Kelvin probe force microscopy and its application[J]. Surf. Sci. Rep., 2011, 66(1):1-27.
SIRRINGHAUS H, BIRD M, ZHAO N. Charge transport physics of conjugated polymer field-effect transistors[J]. Adv.Mater., 2010, 22(34):3893-3898.
NICHOLS J A, GUNDLACH D J, JACKSON T N. Potential imaging of pentacene organic thin-film transistors[J]. Appl. Phys. Lett., 2003, 83(12):2366-2368.
PUNTAMBEKAR K P, PESAVENTO P V, FRISBIE C D. Surface potential profiling and contact resistance measurements on operating pentacene thin-film transistors by Kelvin probe force microscopy[J]. Appl. Phys. Lett., 2003, 83(26):5539-5541.
PETROVI? A, PAVLICA E, BRATINA G, et al.. Contact resistance in organic thin film transistors[J]. Synth. Met., 2009, 159(12):1210-1214.
MIYANO K, YANAGIDA M, TRIPATHI N, et al.. Simple characterization of electronic processes in perovskite photovoltaic cells[J]. Appl. Phys. Lett., 2015, 106(9):093903.
HAMADANI B H, NATELSON D. Gated nonlinear transport in organic polymer field effect transistors[J]. J. Appl. Phys., 2004, 95(3):1227-1232.
彭应全, 范国莹, 周茂清, 等. 给-受体材料系统中光致发光的峰值波长随浓度变化的理论[J]. 发光学报, 2012, 33(2):216-220. PENG Y Q, FAN G Y, ZHOU M Q, et al.. Effect of doping concentration on the peak wavelength of photoluminescence in donor-acceptor system[J]. Chin. J. Lumin., 2012, 33(2):216-220. (in English)
杨汀, 谢吉鹏, 范国莹, 等. 衬底对PTCDA薄膜结构与电荷输运特性的影响[J]. 发光学报, 2012, 33(3):334-340. YANG T, XIE J P, FAN G Y, et al.. Effect of substrate on the structure and charge transport property of PTCDA thin film[J]. Chin. J. Lumin., 2012, 33(3):334-340. (in Chinese)
KLAUK H, SCHMID G, RADLIK W, et al.. Contact resistance in organic thin film transistors[J]. Solid-State Electronics, 2003, 47(2):297-301.
ARKHIPOV V I, WOLF U, BSSLER H. Current injection from a metal to a disordered hopping system. Ⅱ. Comparison between analytic theory and simulation[J]. Phys. Rev. B, 1999, 59(11):7514.
BALDO M A, FORREST S R. Interface-limited injection in amorphous organic semiconductors[J]. Phys. Rev. B, 2001, 64(8):085201.