LI Zhi-cheng, WANG Ya-ling, YANG Yin etc. Improvement of The Performance of Planar Heterojunction Perovskite Solar Cells by Using Pyridine as Additive[J]. Chinese Journal of Luminescence, 2017,38(11): 1503-1509
LI Zhi-cheng, WANG Ya-ling, YANG Yin etc. Improvement of The Performance of Planar Heterojunction Perovskite Solar Cells by Using Pyridine as Additive[J]. Chinese Journal of Luminescence, 2017,38(11): 1503-1509 DOI: 10.3788/fgxb20173811.1503.
Improvement of The Performance of Planar Heterojunction Perovskite Solar Cells by Using Pyridine as Additive
An efficient one-step solution method was demonstrated to prepare CH
3
NH
3
PbI
3
perovskite solar cells by adding pyridine to the precursor solution. The film morphology
crystallinity
and optical properties of CH
3
NH
3
PbI
3
perovskite films were investigated by SEM
AFM
XRD
UV-Vis and PL. The results show that the perovskite film properties (coverage of perovskite films and surface morphology) can be manipulated by incorporating a small amount of pyridine. The adding of pyridine is helpful to obtain a smooth
continuous and dense morphology. With the optimized pyridine volume fraction of 1%
the power conversion efficiency of 7.33% with
J
sc
of 14.64 mA/cm
2
V
oc
of 0.82 V
and FF of 0.61 is obtained for the planar device structure. By contrast
the power conversion efficiency of the device without pyridine is only 1.01%. However
the further increase of the content of pyridine can result in the decomposition of perovskite
because the pyridine can easily form complexes with perovskite and induce the perovskite dissociation.
关键词
Keywords
references
BALL J M, LEE M M, HEY A, et al.. Low-temperature processed meso-superstructured to thin-film perovskite solar cells[J]. Energy Environ. Sci., 2013, 6(6):1739-1743.
CHEN C W, KANG H W, HSIAO S Y, et al.. Efficient and uniform planar-type perovskite solar cells by simple sequential vacuum deposition[J]. Adv. Mater., 2014, 26(38):6647-6652.
CHENG J W, ZHENG S T, YANG G Y. A series of lanthanide-transition metal frameworks based on 1-, 2-, and 3D metal-organic motifs linked by different 1D copper (Ⅰ) halide motifs[KG*6] [J]. Inorgan. chem., 2007, 46(24):10261-10267.
STRANKS S D, EPERON G E, GRANCINI G, et al.. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 2013, 342(6156):341-344.
WEHRENFENNIG C, EPERON G E, JOHNSTON M B, et al.. High charge carrier mobilities and lifetimes in organolead trihalide perovskites[J]. Adv. Mater., 2014, 26(10):1584-1589.
XING G, MATHEWS N, SUN S, et al.. Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3 [J]. Science, 2013, 342(6156):344-347.
LIU M, JOHNSTON M B, SNAITH H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013, 501(7467):395-398.
SHIN S S, YEOM E J, YANG W S, et al.. Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells[J]. Science, 2017, 356(6334):167-171.
JIANG Q, ZHANG L, WANG H, et al.. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells[J]. Nat. Energy, 2017, 2(4):17060.
SALIBA M, MATSUI T, DOMANSKI K, et al.. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance[J]. Science, 2016, 354(6309):206-209.
SALIBA M, MATSUI T, SEO J Y, et al.. Cesium-containing triple cation perovskite solar cells:improved stability, reproducibility and high efficiency[J]. Energy Environ. Sci., 2016, 9(6):1989-1997.
YANG W S, PARK B W, JUNG E H, et al.. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells[J]. Science, 2017, 356(6345):1376-1379.
IM J H, LEE C R, LEE J W, et al.. 6.5% efficient perovskite quantum-dot-sensitized solar cell[J]. Nanoscale, 2011, 3(10):4088-4093.
KIM H S, LEE C R, IM J H, et al.. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Sci. Rep., 2012, 2:591.
ETGAR L, GAO P, XUE Z, et al.. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells[J]. J. Am. Chem. Soc., 2012, 134(42):17396-17399.
JENG J Y, CHIANG Y F, LEE M H, et al.. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells[J]. Adv.Mater., 2013, 25(27):3727-3732.
JEON N J, NOH J H, KIM Y C, et al.. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells[J]. Nat. Mater., 2014, 13(9):897-903.
LIANG P W, LIAO C Y, CHUEH C C, et al.. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells[KG*6] [J]. Adv. Mater., 2014, 26(22):3748-3754.
XIAO M, HUANG F, HUANG W, et al.. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells[J]. Angew. Chem., 2014, 126(37):10056-10061.
ZUO C, DING L. An 80.11% FF record achieved for perovskite solar cells by using the NH4Cl additive[J]. Nanoscale, 2014, 6(17):9935-9938.
ZHAO Y, ZHU K. CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3:structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells[J]. J. Phys. Chem. C, 2014, 118(18):9412-9418.
SONG X, WANG W, SUN P, et al.. Additive to regulate the perovskite crystal film growth in planar heterojunction solar cells[J]. Appl. Phys. Lett., 2015, 106(3):033901.
STRANKS S D, EPERON G E, GRANCINI G, et al.. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 2013, 342(6156):341-344.
NOEL N K, ABATE A, STRANKS S D, et al.. Enhanced photoluminescence and solar cell performance via lewis base passivation of organic-inorganic lead halide perovskites[J]. ACS Nano, 2014, 8(10):9815-9821.
YUE Y F, SALIM N T, WU Y Z, et al.. Enhanced stability of perovskite solar cells through corrosion-free pyridine derivatives in hole-transporting materials[J]. Adv. Mater., 2016, 28(48):10738-10743.
Effect of Defects on Performance of All Inorganic Perovskite Solar Cells
Flexible Perovskite Photovoltaics: Progress, Commercialization and Prospects
Research Progress on Electrode Materials and Charge Transport Materials in Flexible Perovskite Solar Cells
Perovskite Solar Cells Prepared by Two-step Solution Method with Additive
MAPbI(3-x)Brx Perovskite Solar Cells Based on Adjustable Band Gap
Related Author
SU Zisheng
LIU Jiapeng
WEN Chao
YAO Guangping
LI Manya
LI Ludong
LIU Zhou
TAN Hairen
Related Institution
College of Photonic and Electronic Engineering, Fujian Normal University
School of Advanced Manufacturing, Fuzhou University
Fujian Key Laboratory for Advanced Micro-nano Photonics Technology and Devices, College of Physics and Information Engineering, Quanzhou Normal University
School of Engineering and Applied Sciences, Nanjing University
State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University