JIA Jing, JIA Hu-sheng, ZHANG Ai-qin etc. Highly Elastic and Flexible Phosphor Film for Flexible LED Lighting and Display Applications[J]. Chinese Journal of Luminescence, 2017,38(11): 1493-1502
JIA Jing, JIA Hu-sheng, ZHANG Ai-qin etc. Highly Elastic and Flexible Phosphor Film for Flexible LED Lighting and Display Applications[J]. Chinese Journal of Luminescence, 2017,38(11): 1493-1502 DOI: 10.3788/fgxb20173811.1493.
Highly Elastic and Flexible Phosphor Film for Flexible LED Lighting and Display Applications
Flexible LEDs have attracted significant interest in recent years for lighting and display applications. We present a polydimethylsiloxane based phosphor film that is capable of high elasticity and flexibility while actively emitting light. It not only exhibits good thermal stability in a wide range of -50-230℃
but also retains the optical properties as raw phosphors. The prepared transparent PDMS thin film and the corresponding phosphor film enable complete flexibility and elasticity
the largest elongation is up to 400% and 275%
respectively. Besides
white LEDs were fabricated using prepared YAG-doped phosphor film
showing average
T
c
of 6 925 K
CRI of 71 and mean luminous efficiency of 115.7 lm/W. Furthermore
the proposed photoluminescent films in two colors and a flexible 33 LED array glowing with three colors were fabricated using thin elastic and transparent rubber and subjected to stretching
rolling and folding to demonstrate their promising use in flexible lighting and display applications.
关键词
Keywords
references
KRASNOV A N. High-contrast organic light-emitting diodes on flexible substrates[J]. Appl. Phys. Lett., 2002, 80:3853-3855.
HELANDER M G, WANG Z B, GREINER M T, et al.. Oxidized gold thin films:an effective material for high-performance flexible organic optoelectronics[J]. Adv. Mater., 2010, 22:2037-2040.
XU X Z, ZHOU J, LUBINEAU G, et al.. Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics[J]. Nanoscale, 2016, 8:12294-12306.
CHOI J H, CHO E H, LEE Y S, et al.. Fully flexible GaN light-emitting diodes through nanovoid-mediated transfer[J]. Adv. Opt. Mater., 2014, 2:267-274.
TIAN P F, MCKENDRY J J, GU E, et al.. Fabrication, characterization and applications of flexible vertical InGaN micro-light emitting diode arrays[J]. Opt. Express, 2016, 24:699-707.
SHER C W, CHEN K J, LIN C C, et al.. Large-area, uniform white light LED source on a flexible substrate[J]. Opt. Express, 2015, 23:A1167-A1178.
BURROWS P E, GRAFF G L, GROSS M E, et al.. Ultra barrier flexible substrates for flat panel displays[J]. Displays, 2001, 22:65-69.
HAN T H, LEE Y B, CHOI J H, et al.. Extremely efficient flexible organic light-emitting diodes with modified graphene anode[J]. Nat. Photon., 2012, 6:105-110.
SHIN M K, OH J Y, BAUGHMAN R H, et al.. Elastomeric conductive composites based on carbon nanotube forests[J]. Adv. Mater., 2010, 22:2663-2667.
WHITE M S, KALTENBRUNNER M, GLOWACKI E D, et al.. Ultrathin, highly flexible and stretchable PLEDs[J]. Nat. Photon., 2013, 7:811-816.
HU L, KIM H S, LEE J Y, et al.. Scalable coating and properties of transparent, flexible, silver nanowire electrodes[J]. ACS Nano, 2010, 4:2955-2963.
DEMIR H V, NIZAMOGLU S, ERDEM T, et al.. Quantum dot integrated LEDs using photonic and excitonic color conversion[J]. Nano Today, 2011, 6:632-647.
YANG X, DIVAYANA Y, LECK K S, et al.. A bright cadmium-free, hybrid organic/quantum dot white light-emitting diode[J]. Appl. Phys. Lett., 2012, 101:233110.
ALTINTAS Y, GENC S, TALPUR M Y, et al.. CdSe/ZnS quantum dot films for high performance flexible lighting and display applications[J]. Nanotechnology, 2016, 27:295604.
WENG S F. Fourier Transform Infrared Spectroscopy[M]. 2nd ed. Beijing:Chemical Industry Press, 2014.
E1641-Standard test method for decomposition kinetics by thermogravimetry[S]. US:ASTM, 2007.
WANG H H, HE P, YAN H G, et al.. Synthesis, characteristics and luminescent properties of a new europium(Ⅲ) organic complex applied in near UV LED[J]. Sens. Actuators B, 2011, 156:6-11.
FISCHER A, KOPRUCKI T, GRTNER K, et al.. Feel the heat:nonlinear electrothermal feedback in organic LEDs[J]. Adv. Funct. Mater., 2014, 24:3367-3374.
JACOBS R R, KRUPKE W F, WEBER M J. Measurement of excited-state-absorption loss for Ce3+ in Y3A15O12 and implications for tunable 5d4f rare-earth lasers[J]. Appl. Phys. Lett., 1978, 33:410-412.
JIA J, ZHANG A Q, JIA H S, et al.. Preparation and properties of the flexible remote phosphor film for blue chip-based white LED[J]. Mater. Design, 2016, 102:8-13.
HATANALKA H, SUAANUNIA N. Room-temperature-curable organopolysiloxane composition:US:5405889[P]. 1995-04-11.
魏绪玲, 付含琦, 郑聚成, 等. 橡胶补强填料的研究进展[J].高分子通报,2014, 2:31-35. WEI X L, FU H Y, ZHENG J C, et al.. Progress of reinforcing filler of rubber[J]. Polymer Bull., 2014, 2:31-35. (in Chinese).
田军涛, 许炳才.非炭黑橡胶补强填料的应用研究进展[J].橡胶工业, 2006, 53:52-61. TIAN J T, XU B C. Research progress and application of non-carbon black reinforce filler for rubber[J]. China Rubber Industry, 2006, 53:52-61. (in Chinese)
SPERLING L H. Joined and sequential interpenetrating polymer networks based on poly(dimethylsiloxane)[J]. J. Appl. Polym. Sci., 1972, 16:3041-3046.
HE X W, WIDMAIER J M, HERZ J E, et al.. Polydimethylsiloxane/poly (methylmethacrylate) interpenetrating polymer networks:2. Synthesis and properties[J]. Polymer, 1992, 33:866-871.
URAGAMI T, SUMIDA I, MIYATA T, et al.. Pervaporation characteristics in removal of benzene from water through polystyrene-poly(dimethylsiloxane) IPN membranes[J]. Mater. Sci. Appl., 2011, 2:169-179.
GUILD J. The colorimetric properties of the spectrum[J]. Philos. Trans. R. Soc. Lond., 1932, 230:149-187.
FORSTER T. Transfer mechanism of electronic excitation[J]. Discuss. Faraday Soc., 1959, 27:7-17.
GUO T F, WEN T C, HUANG Y S, et al.. White-emissive tandem-type hybrid organic/polymer diodes with (0.33,0.33) chromaticity coordinates[J]. Opt. Express, 2009, 17:21205-21215.
Nichia Application Guide. Light measurement and units[R]. Japan:Nichia, 2016.
CHEN K J, LIN B C, KUO H C, et al.. Effect of the thermal characteristics of phosphor for the conformal and remote structures in white light-emitting diodes[J]. IEEE Photon. J., 2013, 5:8200508.