CHEN Wen, CHEN Le,. Preparation of Micro-nano Structure Black Silicon and Discussion of Key Processing Technologies[J]. Chinese Journal of Luminescence, 2017,38(11): 1486-1492
CHEN Wen, CHEN Le,. Preparation of Micro-nano Structure Black Silicon and Discussion of Key Processing Technologies[J]. Chinese Journal of Luminescence, 2017,38(11): 1486-1492 DOI: 10.3788/fgxb20173811.1486.
Preparation of Micro-nano Structure Black Silicon and Discussion of Key Processing Technologies
Black silicon is a new type of electronic material which can significantly improve the efficiency of photoelectric conversion device
and the micro-nano structure black silicon is a more efficient novel black silicon material than the ordinary black silicon materials. Preparation of a large area
good appearance characteristics and high surface cleanliness black silicon material is the premise for the preparation of efficient black silicon solar cells. Firstly
using the wet etching method
through the design appropriate reaction device and a good means of process control
the large area micro-nano structures black silicon was prepared by the pyramid silicon. Then
the key processing technologies were discussed. Experimental results show that the micro-nano structures black silicon prepared by this processing method has the characteristics of good appearance characteristics
high surface cleanliness and low surface reflectance. Effectively removing the surface silver deposits
the weighted average reflectivity of the black silicon is as low as 4.06% in the wavelength range of 300-1 100 nm. This preparation method is suitable for the preparation of large area efficient micro-nano structure black silicon
which has important application value in the field of high-efficient black silicon solar cells.
关键词
Keywords
references
YANG L X, LIU Y P, WANG Y, et al.. 18.87%-efficient inverted pyramid structured silicon solar cell by one-step Cu-assisted texturization technique[J]. Solar Energy Mater. Solar Cells, 2017, 166:121-126.
GARNETT E, YANG P D. Light trapping in silicon nanowire solar cells[J]. Nano Lett., 2010, 10:1082-1087.
JEONG S, MCGEHEE M D,CUI Y. All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency[J]. Nat. Commun., 2013, 4:2950.
沈宏君, 李婷, 卢辉东, 等. 利用陷光结构增加硅薄膜太阳能电池的吸收效率[J]. 发光学报, 2016, 37(7):816-822. SHEN H J, LI T, LU H D, et al.. Enhancement of light absorption in thin film silicon solar cellswith light traping[J]. Chin. J. Lumin., 2016, 37(7):816-822. (in Chinese)
PENG Y, CHEN X Q, ZHOU Y Y, et al.. Annealing-insensitive black silicon with high infrared absorption[J]. J. Appl. Phys., 2014, 116; 073102.
HSU C H, WU J R, LU Y T, et al.. Fabrication and characteristics of black silicon for solar cell applications:an overview[J]. Mater. Sci. Semicond. Proc., 2014, 25:2-17.
SRIVASTAVA S K, KUMAR D, VANDAN A, et al.. Silver catalyzed nano-texturing of silicon surfaces for solar cell applications[J]. Solar Energy Mater. Solar Cells, 2012, 100:33-38.
JIANG Y, SHEN H L, PU T, et al.. High efficiency multI-crystalline silicon solar cell with inverted pyramid nanostructure[J]. Solar Energy, 2017, 142(15):91-96.
DAVIDSEN R S, LI H Z, TO A, et al.. Black silicon laser-doped selective emitter solar cell with 18.1% efficiency[J]. Solar Energy Mater. Solar Cells, 2016, 144:740-747.
PABLO O, ERIC C, GUILLAUME G, et al.. High-efficiency black silicon interdigitated back contacted solar cells on p-type and n-type c-Si substrates[J]. Prog. Photovolt.:Res. Appl., 2015, 23(11):1448-1457.
FATIMA T, JIHUN O, HOWARD M B. Efficient nanostructured black silicon solar cell by copper-catalyzed metal-assisted etching[J]. Prog. Photovolt:Res. Appl., 2014, 23(10):1375-1380.
JIAN G, MARKUS D R, BENJAMIN P B, et al.. Application of black silicon for nanostructure-initiator mass spectrometry[J]. Anal. Chem., 2016, 88:1625-1630.
陶海岩, 陈锐, 宋晓伟, 等. 飞秒激光脉冲能量累积优化对黑硅表面形貌的影响[J]. 物理学报, 2017, 66(6):067902-8. TAO H Y, CHEN R, SONG X W, et al.. Femtosecond laser pulse energy accumulation optimization effect on surface morphology of black silicon[J]. Acta Phys. Sinica, 2017, 66(6):067902-8. (in Chinese)
JENS H, MARIA G, NORBERT B, et al.. Optoelectronic properties of black-silicon generated through inductively coupled plasma (ICP) processing for crystalline silicon solar cells[J]. Appl. Surf. Sci., 2016, 374:252-256.
PENG K, LU A, ZHANG R. Motility of metal nanoparticles in silicon and induced anisotropic silicon etchting[J]. Adv. Funct. Mater., 2008, 18(19):3026-303.
HUANG Z P, GEYER N, WERNER P, et al.. Metal-assisted chemical etching of silicon:a review[J]. Adv. Mater., 2011, 23:285-308.
郑超凡, 沈鸿烈, 蒲天, 等. 银铜双原子MACE法可控制备倒金字塔多晶黑硅的结构与性能[J]. 光子学报, 2017, 46(1):0116002. ZHENG C F, SHEN L, PU T, et al.. Structures and properties of black multicrystalline silicon with a structure of invert pyramid prepared controllably by Ag and Cu dually assisted chemical etching method[J]. Acta Photon. Sinica, 2017, 46(1):0116002. (in Chinese)
邵长金, 何静, 刘邦武, 等. 黑硅材料的制备及其光学特性[J]. 发光学报, 2012, 33(12):1357-1361. SHAO C J, HE J, LIU B W, et al.. Preparation and optical characterization of black silicon materials[J]. Chin. J. Lumin., 2012, 33(12):1357-1361. (in Chinese)
CHEN L, WANG Q K, SHEN X Q, et al.. Absorption enhancement in thin film a-Si solar cells with double-sided SiO2 particle layers[J]. Chin. Phys. B, 2015, 24(10):104201.
ZHENG B W, HUANG S S, ZHAI C W, et al.. Broadband and wide-angle antireflection realized by multireflection effect in a micro--shape array[J]. Appl. Opt., 2013, 52(23):5585-5590.
LIU Y H, ZI W, LIU S Z, et al.. Effective light trapping by hybrid nanostructure for crystalline silicon solar cells[J]. Solar Energy Mater. Solar Cells, 2015, 140:180-186.
CAMAN M E, ECONOMIKOS L. Computer vision for automatic inspection of complex metal patterns on multichip modules (MCM-D)[J]. IEEE, 1995, 18(4):675-684.
Progress of Two-dimensional Perovskite Solar Cells Based on Aromatic Organic Spacers
Progress of Lead-free Perovskite Photovoltaic Materials and Devices
Spectra Control of Perovskite Luminescence and Optoelectronic Devices
Conversion Efficiency of Strained Wurtzite ZnSnN2/InxGa1-xN Cylindrical Quantum Dot Solar Cell Under Influence of Built-in Electric Field
Related Author
LI Lin
WANG Baoning
CAO Shishuang
LIU Yongsheng
WANG Rui
GAO Yuping
CHEN Cong
SONG Hong-wei
Related Institution
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University
Institute of Polymer Chemistry, College of Chemistry, Nankai University
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University
School of Material Science and Engineering, Hebei University of Technology
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University