LIU Xiao-hui, MA Shi-tong, ZHENG Ke-zhi etc. Upconversion Luminescence of Sm<sup>2+</sup> Ions Based on Cooperative Energy Transfer[J]. Chinese Journal of Luminescence, 2017,38(11): 1413-1419
LIU Xiao-hui, MA Shi-tong, ZHENG Ke-zhi etc. Upconversion Luminescence of Sm<sup>2+</sup> Ions Based on Cooperative Energy Transfer[J]. Chinese Journal of Luminescence, 2017,38(11): 1413-1419 DOI: 10.3788/fgxb20173811.1413.
Upconversion Luminescence of Sm2+ Ions Based on Cooperative Energy Transfer
We report the observation of upconversion luminescence from Sm
2+
ions
which demonstrate that changeable valence lanthanides can served as the ions for optical frequency transformation. Upon the excitation of 980 nm diode laser
the doped Sm
2+
ions in the hybrid material of BaFCl
0.5
Br
0.5
:1%Sm
2+
-CaF
2
:1%Yb
3+
emit red upconversion fluorescence peaked at 631
644
665
689
704
729 nm from the
5
D
0
1
7
F
0
1
2
transitions
respectively. By transient dynamic analysis
we attribute the excitation of Sm
2+
ions to the cooperation energy transfer process:two excited Yb
3+
ions simultaneously transfer their energy to one Sm
2+
ion.
关键词
Keywords
references
JOHNSON L, GUGGENHEIM H. Laser emission at 3m from Dy3+ in BaY2F8[J]. Appl. Phys. Lett., 1973, 23(2):96-98.
SILVERSMITH A, LENTH W, MACFARLANE R. Green infrared-pumped erbium upconversion laser[J]. Appl. Phys. Lett., 1987, 51(24):1977-1979.
MACFARLANE R, TONG F, SILVERSMITH A, et al.. Violet cw neodymium upconversion laser[J]. Appl. Phys. Lett., 1988, 52(16):1300-1302.
DANGER T, KOETKE J, BREDE R, et al.. Spectroscopy and green upconversion laser emission of Er3+-doped crystals at room temperature[J]. J. Appl. Phys., 1994, 76(3):1413-1422.
JOUBERT M F. Photon avalanche upconversion in rare earth laser materials[J]. Opt. Mater., 1999, 11(2):181-203.
POLLNAU M, GAMELIN D, LTHI S, et al.. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems[J]. Phys. Rev. B, 2000, 61(5):3337.
ALLAIN J, MONERIE M, POIGNANT H. Red upconversion Yb-sensitised Pr fluoride fibre laser pumped in 0.8 mu m region[J]. Electron. Lett., 1991, 27(13):1156-1157.
ALLAIN J, MONERIE M, POIGNANT H. Tunable green upconversion erbium fibre laser[J]. Electron. Lett., 1992, 28(2):111-113.
TBBEN H. Room temperature CW fibre laser at 3.5m in Er3+-doped ZBLAN glass[J]. Electron. Lett., 1992, 28(14):1361-1362.
PARK W, JUNG M, YOON D. Influence of Eu3+, Bi3+ co-doping content on photoluminescence of YVO4 red phosphors induced by ultraviolet excitation[J]. Sens. Actuator B:Chem., 2007, 126(1):324-327.
YI L, HE X, ZHOU L, et al.. A potential red phosphor LiGd(MoO4)2:Eu3+ for light-emitting diode application[J]. J Lumin., 2010, 130(6):1113-1117.
ALONSO J, FERRER J, SALINAS-CASTILLO A, et al.. Solvent dependent behaviour of poly (9-vinylcarbazole)-based polymer light emitting diodes[J]. Solid State Electron., 2010, 54(11):1269-1272.
QIN W, ZHANG D, ZHAO D, et al.. Near-infrared photocatalysis based on YF3:Yb3+, Tm3+/TiO2 core/shell nanoparticles[J]. Chem. Commun., 2010, 46(13):2304-2306.
WEI L, DOUGHAN S, HAN Y, et al.. The intersection of CMOS microsystems and upconversion nanoparticles for luminescence bioimaging and bioassays[J]. Sensors, 2014, 14(9):16829-16855.
GUO X, DI W, CHEN C, et al.. Enhanced near-infrared photocatalysis of NaYF4:Yb, Tm/CdS/TiO2 composites[J]. Dalton Trans., 2014, 43(3):1048-1054.
徐嘉林, 金维召, 刘旺, 等. Ho,Yb:Tb3Ga5O12纳米粉体制备及发光性能研究[J]. 中国光学, 2015, 8(4):608-614. XU J L, JIN W Z, LIU W, et al.. Preparation and luminescent properties of Ho,Yb:Tb3Ga5O12 nano-powder[J]. Chin. Opt., 2015, 8(4):608-614. (in Chinese)
李树伟, 孙佳石, 石琳琳, 等. 掺杂浓度对BaGd2ZnO5:Er3+/Yb3+荧光粉上转换发光的影响[J]. 光子学报, 2015, 44(8):0816002. LI S W, SUN J S, SHI L L, et al.. Influence of doping concentration on the upconversion luminescence in BaGd2ZnO5:Er3+/Yb3+[J]. Acta Photon. Sinica, 2015, 44(8):0816002. (in Chinese)
DOSEV D, KENNEDY I, GODLEWSKI M, et al.. Fluorescence upconversion in Sm-doped Gd2O3[J]. Appl. Phys. Lett., 2006, 88(1):1906.
DAS S, REDDY A A, PRAKASH G V. Strong green upconversion emission from Er3+-Yb3+ co-doped KCaBO3 phosphor[J]. Chem. Phys. Lett., 2011, 504(4):206-210.
BEURER E, GRIMM J, GERNER P, et al.. New type of near-infrared to visible photon upconversion in Tm2+-doped CsCaI3[J]. J. Am. Chem. Soc., 2006, 128(10):3110-3111.
O'CONNOR J, BOSTICK H. Radiation effects in CaF2:Sm[J]. J. Appl. Phys., 1962, 33(5):1868-1870.
DIEKE G H, SARUP A R. Fluorescence spectrum and the energy levels of the Sm2+ ion[J]. J. Chem. Phys., 1962, 36(2):371-377.
WOOD D, KAISER W. Absorption and fluorescence of Sm2+ in CaF2, SrF2, and BaF2[J]. Phys. Rev., 1962, 126(6):2079.
JAANISO R, BILL H. Room temperature persistent spectral hole burning in Sm-doped SrFCl1/2Br1/2 mixed crystals[J]. Europhys. Lett., 1991, 16(6):569.
HOLLIDAY K, WEI C, CROCI M, et al.. Spectral hole-burning measurements of optical dephasing between 2-300 K in Sm2+ doped substitutionally disordered microcrystals[J]. J. Lumin., 1992, 53(1):227-230.
ZHANG J, HUANG S, QIN W, et al.. Process of persistent spectral hole burning in SrFCl:Sm2+[J]. J. Lumin., 1992, 53(1):275-278.
BAYER E, SCHAACK G. Two-photon absorption of CaF2:Eu2+[J]. Phys. Stat. Sol. B, 1970, 41(2):827-835.
KUSHIDA T. Energy transfer and cooperative optical transitions in rare-earth doped inorganic materials. Ⅱ.Comparison with experiments[J]. J. Phys. Soc. Jpn., 1973, 34(5):1327-1333.
VARSANYI F, DIEKE G. Ion-pair resonance mechanism of energy transfer in rare earth crystal fluorescence[J]. Phys. Rev. Lett., 1961, 7(12):442.
PETIT V, CAMY P, DOUALAN J L, et al.. Spectroscopy of Yb3+:CaF2:from isolated centers to clusters[J]. Phys. Rev. B, 2008, 78(8):085131.