浏览全部资源
扫码关注微信
1. 宁夏大学 土木水利工程学院, 宁夏 银川 750021
2. 宁夏大学 农学院, 宁夏 银川 750021
3. Graduate School of Science and Technology in Niigata University Niigata,Japan,950-2181
Received:12 June 2017,
Revised:06 July 2017,
Published Online:16 August 2017,
Published:05 October 2017
移动端阅览
吴龙国, 王松磊, 何建国等. 基于高光谱成像技术的土壤水分机理研究及模型建立[J]. 发光学报, 2017,38(10): 1366-1376
WU Long-guo, WANG Song-lei, HE Jian-guo etc. Soil Moisture Mechanism and Establishment of Model Based on Hyperspectral Imaging Technique[J]. Chinese Journal of Luminescence, 2017,38(10): 1366-1376
吴龙国, 王松磊, 何建国等. 基于高光谱成像技术的土壤水分机理研究及模型建立[J]. 发光学报, 2017,38(10): 1366-1376 DOI: 10.3788/fgxb20173810.1366.
WU Long-guo, WANG Song-lei, HE Jian-guo etc. Soil Moisture Mechanism and Establishment of Model Based on Hyperspectral Imaging Technique[J]. Chinese Journal of Luminescence, 2017,38(10): 1366-1376 DOI: 10.3788/fgxb20173810.1366.
为了研究宁夏地区土壤的水分迁移机理以及对土壤水分快速无损检测,利用高光谱成像(光谱范围900~1700 nm)技术对土壤的含水率进行了研究。通过高光谱成像系统采集了208个土样,比较了不同天数下土壤含水率与光谱的变化、不同质量含水量光谱的差异。对采集到的土样进行PLSR模型建立,对比分析不同光谱预处理方法、不同方法提取特征波长(UVE、CARS、
系数、SPA)、不同建模方法(MLR、PCR、PLSR)建立的模型,优选出最佳模型。结果表明:在一定的土壤含水量范围内,光谱曲线的反射率与土壤含水率成反比;当增大到超过田间持水率时,光谱曲线的反射率与土壤含水率成正比。对比分析了不同预处理方法,优选出单位向量归一化预处理方法。对比不同的模型,优选出SPA提取的特征波长的MLR模型。最优的特征波长为987,1386,1466,1568,1636,1645 nm,最优模型的预测相关系数
R
p
=0.984,预测均方根误差RMSEP为0.631。因此,今后可采用不同波段对土壤含水率进行定量分析。
By using the near-infrared(spectral range of 900-1700 nm) hyperspectral imaging technique
the soil moisture movement mechanism and non-destructive determination of the moisture content of soil in Ningxia Hui Autonomous Region were studied. A total of 208 soil samples were collected by hyperspectral imaging system. The differences among soil water content
spectral changes
and spectra of different water contents were compared. The best model was chosen by different spectral pretreatment manners
different extraction manners of the characteristic wavelengths(UVE
CARS
coefficient
SPA)
and different building model manners(MLR
PCR
PLSR). The results show that the changes of spectra are inversely proportional to the changes of soil water content within the moisture limits. When the moisture content of soil is beyond the field water holding capacity
the changes of spectra are directly proportional to the changes of soil water content. The unit vector normalized preprocessing method is optimized. The best model is MLR method based on the characteristic wavelength of SPA extraction. The optimal characteristic wavelengths are 987
1386
1466
1568
1636
1645 nm
and the value of optimal correlation coefficient and RMSE are 0.984 and 0.631
respectively. Therefore
the soil moisture content can be quantitatively analyzed using different wavelengths.
张婷华. 土壤水分胁迫对温室番茄蒸腾的影响及模拟研究[D]. 南京:南京信息工程大学, 2014. ZHANG T H. The Research of Effects and Simulation of Soil Water Stress on Transpiration of Tomato in Greenhouse[D]. Nanjing:Nanjing Institute of Information Engineering, 2014. (in Chinese)
邱让建. 温室环境下土壤-植物系统水热动态与模拟[D]. 北京:中国农业大学, 2014. QIU R J. Water and Heat Dynamics and Simulation in Soil-Plant System in Greenhouse[D]. Beijing:China Agricultural University, 2014. (in Chinese)
冯绍元, 陈绍军, 霍再林, 等. 我国水资源承载力研究现状及展望[J]. 东华理工学院学报, 2006, 29(4):301-306. FENG S Y, CHEN S J, HUO Z L, et al.. Review on the present situation and future prospect of water resource carrying capacity in China[J]. J. East China Inst. Technol., 2006, 29(4):301-306. (in Chinese)
吴进. 精准农业模式研究[D]. 武汉:华中师范大学,2007. WU J. A Study on The Precision Agriculture Mode[D]. Wuhan:Huazhong Normal University, 2007. (in Chinese)
陈怀亮, 冯定原, 邹春辉, 等. 用遥感资料估算深层土壤水分的方法和模型[J]. 应用气象学报, 1999, 10(2):232-237. CHEN H L, FENG D Y, ZOU C H, et al.. The monitoring method and model of deep soil layer moistures by remotely sensed data[J]. J. Appl. Meteorol., 1999, 10(2):232-237. (in Chinese)
ZENG W Z, XU C, WU J W, et al.. Soil salt leaching under different irrigation regimes:HYDRUS-1D modelling and analysis[J]. J. Arid Land, 2014, 6(1):44-58.
ZARABI M, JALALI I M. Leaching of nitrogen from calcareous soils in western Iran:a soil leaching column study[J]. Environment. Monit. Assessm., 2012, 184(12):7607-7622.
ROGER D, DE R, YANG D. A semi-empirical backscattering model at L-band and C-band for a soybean canopy with soil moisture inversion[J]. IEEE Trans. Geosci. Remote Sens., 2001, 39(4):864- 872.
鲍艳松,刘良云,王纪华. 综合利用光学、微波遥感数据反演土壤湿度研究[J]. 北京师范大学学报(自然科学版),2007, 43(3):228-233. BAO Y S, LIU L Y, WANG J H. Soil moisture estimation based on optical and microwave remote sensing data[J]. J. Beijing Norm. Univ. (Nat. Sci.), 2007, 43(3):228-233. (in Chinese)
NJOKU E G, LI L. Retrieval of land surface parameters using passive microwave measurements at 6-18 GHz[J]. IEEE Trans. Geosci. Remote Sens., 1999, 37(1):79-93.
乔平林, 张继贤, 王翠华. 基于星载被动微波遥感的地表土壤湿度反演[J]. 辽宁工程技术大学学报, 2006, 25(3):342-344. QIAO P L, ZHANG J X, WANG C H. Soil moisture retrieving by passive microwave remote sensing data[J]. J. Liaoning Tech. Univ., 2006, 25(3):342-344. (in Chinese)
吴黎, 张有智, 解文欢, 等. 改进的表观热惯量法反演土壤含水量[J]. 国土资源遥感, 2013, 25(1):44-49. WU L, ZHANG Y Z, XIE W H, et al.. The inversion of soil water content by the improved apparent thermal inertia[J].Remote Sens. Land Resources, 2013, 25(1):44-49. (in Chinese)
张春桂, 李文. 福建省干旱灾害卫星遥感监测应用研究[J]. 气象, 2004, 30(3):22-24. ZHANG C G, LI W. Study on remote sensing monitoring application of drought disaster in Fujian province[J]. Meteorological, 2004, 30(3):22-24. (in Chinese)
姚春生, 张增祥, 汪潇. 使用温度植被干旱指数法(TVDI)反演新疆土壤湿度[J]. 遥感技术与应用, 2004, 19(6):473-478. YAO C S, ZHANG Z X, WANG X. Evaluating soil moisture status in Xinjiang using the temperature vegetation dryness index (TVDI)[J]. Remote Sens. Technol. Appl., 2004, 19(6):473-478. (in Chinese)
隋洪智, 田国良, 李付琴. 农田蒸散双层模型及其在干旱遥感监测中的应用[J]. 遥感学报, 1997, 1(3):220-224. SUI H Z, TIAN G L, LI F Q. Two-layer model for monitoring drought using remote sensing[J]. J. Remote Sens., 1997, 1(3):220-224. (in Chinese)
WANG C K, PAN X Z, WANG M, et al.. Prediction of soil organic matter content under moist conditions using Vis-NIR diffuse reflectance spectroscopy[J]. Soil Sci., 2013, 178(4):189-193.
MINASNY B, MCBRATNEY A B, BELLON-MAUREL V, et al.. Removing the effect of soil moisture from NIR diffuse reflectance spectra for the prediction of soil organic carbon[J]. Geoderma, 2011, 167-168:118-124.
GALVAO L S, FORMAGGIO A R, COUTO E G, et al.. Relationships between the mineralogical and chemical composition of tropical soils and topography from hyperspectral remote sensing data[J]. ISPRS J. Photogram. Remote Sens., 2008, 63(2):259-271.
SELIGE T, BHNER J, SCHMIDHALTER U. High resolution topsoil mapping using hyperspectral image and field data in multivariate regression modeling procedures[J]. Geoderma, 2006, 136(1/2):235-244.
GOMEZ C, ROSSEL R A V, MBRATNEY A B. Soil organic carbon prediction by hyperspectral remote sensing and field Vis-NIR spectroscopy:an Australian case study[J]. Geoderma, 2008, 146(3/4):403- 411.
张婷婷. 基于PLS模型的农业土壤成分高光谱遥感反演研究[D]. 长春:吉林大学, 2010. ZHANG T T. Partial Least Squares Modeling of Hyperspectral Remote Sensing for Mapping Agricultural Soil Properties[D]. Changchun:Jilin University, 2010. (in Chinese)
吴见, 刘民士, 李伟涛. 基于高光谱影像分解的土壤含水量反演技术[J]. 水土保持通报, 2013(5):156-160. WU J, LIU M S, LI W T. Inversion technology of soil water content based on hyperspectral imaging unmixing[J]. Bull. Soil Water Conserv., 2013(5):156-160. (in Chinese)
魏娜. 土壤含水量高光谱遥感监测方法研究[D]. 北京:中国农业科学院, 2009. WEI N. The Study of Applying Hyper-spectral Remote Sensing Technology in Soil Moisture Monitoring[D]. Beijing:Chinese Academy of Agricultural Sciences, 2009. (in Chinese)
司海青, 姚艳敏, 王德营, 等. 含水率对土壤有机质含量高光谱估算的影响[J]. 农业工程学报, 2015, 31(9):114-120. SI H Q, YAO Y M, WANG D Y, et al.. Hyperspectral prediction of soil organic matter contents under different soil moisture contents[J]. Trans. Chin. Soc. Agric. Eng., 2015, 31(9):114-120. (in Chinese)
LOBELL D B, ASNER G P. Moisture effects on soil reflectance[J].Soil Sci. Soc. Am. J., 2002, 66(3):722-727.
刘伟东, BARET F, 张兵, 等. 高光谱遥感土壤湿度信息提取研究[J]. 土壤学报, 2004, 41(5):700-706. LIU W D, BARET F, ZHANG B, et al.. Extraction of soil moisture information by hyperspectral remote sensing[J]. Acta Pedolog. Sinica, 2004, 41(5):700-706. (in Chinese)
刘娅, 潘贤章, 王昌昆, 等. 土壤湿润条件下基于光谱对称度的盐渍土盐分含量预测[J]. 光谱学与光谱分析, 2013, 10:2771-2776. LIU Y, PAN X Z, WANG C K, et al.. Predicting soil salinity based on spectral symmetry under wet soil condition[J]. Spectrosc. Spect. Anal., 2013, 10:2771-2776. (in Chinese)
YIN Z, LEI T, YAN Q H, et al.. A near-infrared reflectance sensor for soil surface moisture measurement[J]. Comput. Electron. Agric., 2013,99:101-107.
STENBERG B. Effects of soil sample pretreatments and standardised rewetting as interacted with sand classes on Vis-NIR predictions of clay and soil organic carbon[J]. Geoderma, 2010, 158(1/2):15-22.
CECILE G, PHILIPPE L, GUILLAUME C. Regional predictions of eight common soil properties and their spatial structures from hyperspectral Vis-NIR data[J]. Geoderma, 2012, 189-190:176-185.
LIU F, ROSSITER D G, SONG X D, et al.. A similarity-based method for three-dimensional prediction of soil organic matter concentration[J]. Geoderma, 2015, 263(1):254-263.
LIU S L, AN N N, YANG J J, et al.. Prediction of soil organic matter variability associated with different land use types in mountainous landscape in southwestern Yunnan province, China[J]. Catena, 2015, 133(10):137-144.
吴龙国, 何建国, 刘贵珊, 等. 基于近红外高光谱成像技术的长枣含水量无损检测[J]. 光电子激光, 2014,25(1):135-140. WU L G, HE J G, LIU G S, et al.. Non-destructive determination of moisture in jujubes based on near-infrared hyperspectral imaging technique[J]. J. Optoelctron.Laser, 2014, 25(1):135-140. (in Chinese)
冯迪, 纪建伟, 张莉, 等. 基于高光谱成像提取苹果糖度与硬度最佳波长[J]. 发光学报, 2017, 38(6):799-806. FENG D, JI J W, ZHANG L, et al.. Optimal wavelengths extraction of apple brix and firmness based on hyperspectral imaging[J]. Chin. J. Lumin., 2017, 38(6):799-806. (in Chinese)
0
Views
235
下载量
7
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution