PANG Ze-peng, MEI Fu-hong, QIAO Jian-dong etc. Regulation of Optical Properties of ZnO Nanorods Arrays by The Crossion of GaN Substrate[J]. Chinese Journal of Luminescence, 2017,38(10): 1307-1313
PANG Ze-peng, MEI Fu-hong, QIAO Jian-dong etc. Regulation of Optical Properties of ZnO Nanorods Arrays by The Crossion of GaN Substrate[J]. Chinese Journal of Luminescence, 2017,38(10): 1307-1313 DOI: 10.3788/fgxb20173810.1307.
Regulation of Optical Properties of ZnO Nanorods Arrays by The Crossion of GaN Substrate
1-D ZnO nanorods arrays were fabricated on the wet etched GaN substrates and the microstructure and optical properties were studied. Compared with ZnO nanorods grown on GaN with no corrosion and corrosion for 5 min and 10 min
the nanorod arrays with the etching time of 8 min are the finest and have the best optical properties
besides its corresponding PL spectral peak integral ratio
I
UV
/
I
vis
is the largest. Because the dislocations in the GaN substrate with the etching time of 8 min are almost entirely in the surface outcrops
and the ZnO nanorods grown on it are easy to attach to form more nucleated seeds
furthermore it is helpful to induce the helical growth of ZnO crystals when the dislocations of the substrate are at the edge of the surface. Therefore
the ZnO nanorods are more compact and uniform
and the crystal quality and optical properties are more ideal.
关键词
Keywords
references
LOOK D C. Recent advances in ZnO materials and devices[J]. Mater. Sci. Eng. B, 2001, 80(1-3):383-387.
申德振, 梅增霞, 梁会力, 等. 氧化锌基材料、异质结构及光电器件[J]. 发光学报, 2014, 35(1):1-60. SHEN D Z, MEI Z X, LIANG H L, et al.. ZnO-based material, heterojunction and photoelectronic device[J]. Chin. J. Lumin., 2014, 35(1):1-60. (in Chinese)
BAGNALL D M., CHEN Y R, ZHU Z, et al.. Optically pumped lasing of ZnO at room temperature[J]. Appl. Phys. Lett., 1997, 70(17):2230-2232.
梁春广,张冀. GaN-第三代半导体的曙光[J]. 半导体学报, 1999, 20(2):89-99. LIANG C G, ZHANG J. GaN-dawn of 3rd-generation-semiconductors[J]. J. Semicond., 1999, 20(2):89-99. (in Chinese)
MCGARRITY J M, MCLEAN F B, DELANCEY W M, et al.. Silicon carbide JFET radiation response[J]. IEEE Trans. Nucl. Sci., 1992, 39(6):1974-1981.
WRABACK M, SHEN H, LIANG S, et al.. High contrast, ultrafast optically addressed ultraviolet light modulator based upon optical anisotropy in ZnO films grown on R-plane sapphire[J]. Appl. Phys. Lett., 1999, 74(74):507-509.
LEE J M, KIM K K, PARK S J, et al.. Low-resistance and non-alloyed Ohmic contacts to plasma treated ZnO[J]. Appl. Phys. Lett., 2001, 78(24):3842-3844.
SHANG L, LU T P, XU B S, et al.. The evolution of a GaN/sapphire interface with different nucleation layer thickness during two-step growth and its influence on the bulk GaN crystal quality[J]. RSC Advances, 2015, 5(63):51201-51207.
TANS S J, VERSCHUEREN R M, DEKKER C. Room-temperature transistor based on a single carbon nanotube[J]. Nature, 1998, 393(6680):49-52.
AVOURIS P, HERTEL T, MARTEL R, et al.. Carbon nanotubes:nano-mechanics, manipulation, and electronic devices[J]. Appl. Surf. Sci., 1999, 141(3):201-209.
SOCI C, ZHANG A, XIANG B, et al.. ZnO nanowire UV photodetectors with high internal gain[J]. Nano Lett., 2007, 7 (4):1003-1009.
JIN Y Z, WANG J P, SUN B Q, et al.. Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles[J]. Nano Lett., 2008, 8(6):1649-1653.
傅竹西, 林碧霞. 氧化锌薄膜光电功能材料研究的关键问题[J]. 发光学报, 2004, 25(2):117-122. FU Z X, LIN B X. Important problems of studying photo-electronic ZnO films[J]. Chin. J. Lumin., 2004, 25(2):117-122. (in Chinese)
倪永红, 葛学武, 徐相凌, 等. 纳米材料制备研究的若干新进展[J]. 无机材料学报, 2000, 15(1):10-15. NI Y H, GE X W, XU X L, et al.. New developments in the preparation of nanomaterials[J]. J. Inorg. Mater., 2000, 15(1):10-15. (in Chinese)
FU Q M, XU B C, MA D G, et al.. Blue/green electroluminescence from a ZnO nanorods/p-GaN heterojunction light emitting diode under different reverse bias[J]. Appl. Surf. Sci., 2014, 293(8):225-228.
CHU S, OLMEDO M, YANG Z, et al.. Electrically pumped ultraviolet ZnO diode lasers on Si[J]. Appl. Phys. Lett., 2008, 93(18):181106-1-3.
SCHLUR L, CARTON A, LVQUE P, et al.. Optimization of a new ZnO nanorods hydrothermal synthesis method for solid state dye sensitized solar cells applications[J]. J. Phys. Chem. C, 2013, 117(6):2993-3001.
WANG L, KANG Y, LIU X, et al.. ZnO nanorod gas sensor for ethanol detection[J]. Sens. Actuators B:Chem., 2012, 162(1):237-243.
LI Q C, KUMAR V, LI Y, et al.. Fabrication of ZnO nanorods and nanotubes in aqueous solutions[J]. Chem. Mater., 2005, 17(5):1001-1006.
AHN C H, MOHANTA S K, CHO H K. Acceptor dynamics of phosphorous doped ZnO nanorods with stable p-type conduction:photoluminescence and junction characteristics[J]. Nanosci. Nanotechnol., 2012, 12(7):5571-5576.
YOGAMALAR N R, BOSE A C. ZnO-based pn homo-junction fabricated by spin coating method[J]. Sci. Adv. Mater., 2012, 4(1):44-53.
季振国, 宋永梁, 杨成兴, 等. 溶胶-凝胶法制备ZnO薄膜及表征[J]. 半导体学报, 2004, 25(1):52-55. JI Z G, SONG Y L, YANG C X, et al.. Characterization of ZnO thin film preparation by sol-gel spinning-coating[J]. J. Semicond., 2004, 25(1):52-55. (in Chinese)
VIKAS L S, VANAJA K A, SUBHA P P, et al.. Fast UV sensing properties of n-ZnO nanorods/p-GaN heterojunction[J]. Sens. Actuators A:Phys., 2016, 242:116-122.
OH S, LEE S N, CHO S, et al.. High efficiency GaN-based light emitting diode with nano-patterned ZnO surface fabricated by wet process[J]. J. Nanosci. Nanotechnol., 2012, 12(7):5582-5586.
JANG J M, KIM J Y, JUNG W G. Synthesis of ZnO nanorods on GaN epitaxial layer and Si (100) substrate using a simple hydrothermal process[J]. Thin Solid Films, 2008, 516(516):8524-8529.
MORIN S A, JIN S. Screw Dislocation-driven epitaxial solution growth of ZnO nanowires seeded by dislocations in GaN substrates[J]. Nano Lett., 2010, 10(9):3459.
MORIN S A, FORTICAUX A, BIERMAN M J, et al.. Screw dislocation-driven growth of two-dimensional nanoplates[J]. Nano Lett., 2011, 11(10):4449-4455.
LIU H F, LU W, GUO S, et al.. The effect of plasma-gas swirl flow on a highly constricted plasma cutting arc[J]. J. Phys. D:Appl. Phys., 2009, 42(9):095208.
ALNOOR H, POZINA G, KHRANOVSKYY V, et al.. Influence of ZnO seed layer precursor molar ratio on the density of interface defects in low temperature aqueous chemically synthesized ZnO nanorods/GaN light-emitting diodes[J]. J. Appl. Phys., 2016, 119(16):165702.
MENG F, MORIN S A, FORTICAUX A, et al.. Screw dislocation driven growth of nanomaterials[J]. Accounts Chem. Res., 2013, 46(7):1616-1626.
BURTON W K, CABRERA N, FRANK F C. The growth of crystals and the equilibrium structure of their surfaces[J]. Philosoph. Trans. Royal Soc. London Series A:Mathemat. Phys. Sci., 1951, 243(243):299-358.
O'DONNELL K P, WHITE M E, PEREIRA S, et al.. Photoluminescence mapping and rutherford backscattering spectrometry of InGaN epilayers[J]. Phys. Stat. Sol., 1999, 216(1):171-174.
VANHEUSDEN K, WARREN W, VOIGT J, et al.. Mechanisms behind green photoluminescence in ZnO phosphor powders[J]. Appl. Phys., 1996, 79(10):7983-7990.
ZHANG S B, WEI S H, ZUNGER A. Intrinsic n-type versus p-type doping a symmetry and the defect physics of ZnO[J]. Phys. Rev. B, 2001, 63(7):247-250.
KIM Y J, SHANG H M. CAO G Z, Growth and characterization of ZnO nanorod array on ITO substrate with electric field assisted nucleation[J]. J. Sol-gel Sci. Technol., 2006, 38(1):70-84.