浏览全部资源
扫码关注微信
天津城建大学 理学院 天津,300384
Received:02 March 2017,
Revised:13 April 2017,
Published Online:29 June 2017,
Published:05 October 2017
移动端阅览
杨广武, 张守超, 王翠红等. 氧化锌量子点和碳量子点及其复合物的制备与发光性能的研究[J]. 发光学报, 2017,38(10): 1287-1294
YANG Guang-wu, ZHANG Shou-chao, WANG Cui-hong etc. Preparation and Optical Properties of Zinc Oxide, Carbon and Their Quantum Dot Mixture[J]. Chinese Journal of Luminescence, 2017,38(10): 1287-1294
杨广武, 张守超, 王翠红等. 氧化锌量子点和碳量子点及其复合物的制备与发光性能的研究[J]. 发光学报, 2017,38(10): 1287-1294 DOI: 10.3788/fgxb20173810.1287.
YANG Guang-wu, ZHANG Shou-chao, WANG Cui-hong etc. Preparation and Optical Properties of Zinc Oxide, Carbon and Their Quantum Dot Mixture[J]. Chinese Journal of Luminescence, 2017,38(10): 1287-1294 DOI: 10.3788/fgxb20173810.1287.
采用溶胶凝胶方法和水热法制备了水溶性荧光氧化锌量子点(ZnO-QDs)和碳量子点(C-QDs),其量子效率分别达到38%和61%。基于所合成的ZnO-QDs和C-QDs制备了氧化锌和碳量子点复合物(ZnO/C-QDs),并分别对其发光特性进行了研究。透射电镜(TEM)图像表明,所合成的ZnO-QDs和碳量子点尺寸分布在3~6 nm之间,分散均匀。光致发光光谱表明,ZnO-QDs和碳量子点的发光峰中心分别位于540 nm和450 nm,两者发光峰的最佳激发波长为370 nm和350 nm。通过调整ZnO-QDs和C-QDs的体积比,所制备的ZnO/C-QDs能够实现荧光光谱的连续可调,并产生了白色荧光。
Water-soluble fluorescence zinc oxide quantum dots (ZnO-QDs) and carbon quantum dots (C-QDs) were prepared by sol-gel and hydrothermal method
and their quantum yields were 38% and 61%
respectively. ZnO and carbon quantum dots mixtures (ZnO/C-QDs) were prepared based on the as-prepared ZnO-QDs and C-QDs
and their optical properties were investigated
respectively. The transmission electron microscopy (TEM) images indicate that the size of ZnO-QDs and C-QDs are around 3-6 nm and disperse uniformly. The photoluminescence (PL) spectra of ZnO-QDs and C-QDs dominate by a broad emission centered at around 540 nm and 450 nm
and their optimal excitation wavelengths are 370 nm and 350 nm. By adjusting the volume ratio between ZnO-QDs and C-QDs
the spectra of as-prepared ZnO/C-QDs show continuously variable properties
and white fluorescence can be observed from the ZnO/C-QDs.
TANG X, CHOO E S G, LI L, et al.. Synthesis of ZnO nanoparticles with tunable emission colors and their cell labeling applications[J]. Chem. Mater., 2010, 22(11):3383-3388.
ZHOU H P, XU C H, SUN W, et al.. Clean and flexible modification strategy for carboxyl/aldehyde-functionalized upconversion nanoparticles and their optical applications[J]. Adv. Funct. Mater., 2009, 19(24):3892-3900.
TOPETE A, ALATORREMEDA M, IGLESIAS P, et al.. Fluorescent drug-loaded, polymeric-based, branched gold nanoshells for localized multimodal therapy and imaging of tumoral cells[J]. ACS Nano, 2014, 8(3):2725.
SUN Y P, WANG X, LU F, et al.. Doped carbon nanoparticles as a new platform for highly photoluminescent dots[J]. J. Phys. Chem. C:Nanomater. Interf., 2009, 112(47):18295.
AUBERT T, SOENEN S J, WASSMUTH D, et al.. Bright and stable CdSe/CdS@SiO2 nanoparticles suitable for long term cell labeling[J]. Acs Appl. Mater. Interf., 2014, 6(14):11714-11723.
LI Z, GAO C, HU X, et al.. One-pot large-scale synthesis of robust ultrafine silica-hybridized CdTe quantum dots[J]. ACS Appl. Mater. Interf., 1944, 2(4):1211-1219.
DERFUS A M, CHAN W C W, BHATIA S N. Probing the cytotoxicity of semiconductor quantum dots[J]. Nano Lett., 2003, 4(1):11-18.
HARDMAN R. A toxicologic review of quantum dots:toxicity depends on physicochemical and environmental factors[J]. Environm. Health Perspect., 2006, 114(2):165.
ZHANG H J, XIONG H M, REN Q G, et al.. ZnO@silica core-shell nanoparticles with remarkable luminescence and stability in cell imaging[J]. J. Mater. Chem., 2012, 22(26):13159-13165.
QU D, ZHENG M, LI J, et al.. Tailoring color emissions from N-doped graphene quantum dots for bioimaging applications[J]. Light:Sci. Appl., 2015, 4:e364.
LIU K K, SHAN C X, LIU H Z, et al.. Fluorescence of ZnO/carbon mixture and application in acid rain detection[J]. RSC Adv., 2017, 7:1841-1846.
ZHU P, WENG Z, LI X, et al.. Biomedical applications of functionalized ZnO nanomaterials:from biosensors to bioimaging[J]. Adv. Mater. Interf., 2016, 3(1):1160-1167.
ZHANG Z Y, XU Y D, MA Y Y, et al.. Biodegradable ZnO@polymer core-shell nanocarriers:pH-triggered release of doxorubicin in vitro[J]. Angew. Chem., 2013, 52(15):4127-4131.
WANG Q, HUANG X, LONG Y, et al.. Hollow luminescent carbon dots for drug delivery[J]. Carbon, 2013, 59(4):192-199.
LIU K K, SHAN C X, HE G H, et al.. Rewritable painting realized from ambient-sensitive fluorescence of ZnO nanoparticles[J]. Sci. Rep., 2017, 7:42232.
ZHANG W, YU S F, FEI L, et al.. Large-area color controllable remote carbon white-light light-emitting diodes[J]. Carbon, 2015, 85:344-350.
ZHU S, MENG Q, WANG L, et al.. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging[J]. Angew. Chem., 2013, 125(14):4045-4049.
YU H, ZHANG H, HUANG H, et al.. ZnO/carbon quantum dots nanocomposites:one-step fabrication and superior photocatalytic ability for toxic gas degradation under visible light at room temperature[J]. New J. Chem., 2012, 36(4):1031-1035.
GUO D Y, SHAN C X, QU S N, et al.. Highly sensitive ultraviolet photodetectors fabricated from ZnO quantum dots/carbon nanodots hybrid films[J]. Sci. Rep., 2014, 4(6):7469.
GUO D Y, SHAN C X, LIU K K, et al.. Surface plasmon effect of carbon nanodots[J]. Nanoscale, 2015, 7(45):18908-18913.
FU Y S, DU X W, KULINICH S A, et al.. Stable aqueous dispersion of ZnO quantum dots with strong blue emission via simple solution route[J]. J. Am. Chem. Soc., 2008, 129(51):16029-16033.
SHI H Q, LI W N, SUN L W, et al.. Synthesis of silane surface modified ZnO quantum dots with ultrastable, strong and tunable luminescence[J]. Chem. Commun., 2011, 47(43):11921-11923.
PACHOLSKI C, KORNOWSKI A, WELLER H. Self-assembly of ZnO:from nanodots to nanorods[J]. Angew. Chem., 2002, 33(26):1188-1191.
PADMAVATHY N, VIJAYARAGHAVAN R. Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study[J]. Sci. Technol. Adv. Mater., 2008, 9(3):43-48.
ZENG H, DUAN G, LI Y, et al.. Blue luminescence of ZnO nanoparticles based on non-equilibrium processes:defect origins and emission controls[J]. Adv. Funct. Mater., 2010, 20(4):561-572.
QU S, WANG X, LU Q, et al.. A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots[J]. Angew. Chem., 2012, 51(49):12215.
0
Views
346
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution