浏览全部资源
扫码关注微信
1. 吉林大学 电子科学与工程学院,吉林 长春,130012
2. 伊犁师范学院 电子与信息工程学院, 新疆 伊宁,835000
Received:06 April 2017,
Revised:08 May 2017,
Published Online:13 July 2017,
Published:05 October 2017
移动端阅览
吐尔逊·艾迪力比克, 杨育等. Pb2+掺杂导致的CaF2中Yb3+离子三聚体合作发光猝灭[J]. 发光学报, 2017,38(10): 1280-1286
TUERXUN Aidilibike, YANG Yu, ZHAO Dan etc. Pb2+ Ions Doping Induced Cooperative Luminescence Quenching of Yb3+-trimers in CaF2[J]. Chinese Journal of Luminescence, 2017,38(10): 1280-1286
吐尔逊·艾迪力比克, 杨育等. Pb2+掺杂导致的CaF2中Yb3+离子三聚体合作发光猝灭[J]. 发光学报, 2017,38(10): 1280-1286 DOI: 10.3788/fgxb20173810.1280.
TUERXUN Aidilibike, YANG Yu, ZHAO Dan etc. Pb2+ Ions Doping Induced Cooperative Luminescence Quenching of Yb3+-trimers in CaF2[J]. Chinese Journal of Luminescence, 2017,38(10): 1280-1286 DOI: 10.3788/fgxb20173810.1280.
利用978 nm近红外光激发样品CaF
2
:Pb
2+
,Yb
3+
,在室温下观察到二价Pb
2+
离子在383 nm附近的紫外上转换发光。该发射峰对应于Pb
2+
离子的
3
P
0
1
A
1g
(
1
S
0
)跃迁。瞬态光谱测量结果表明:在这个材料体系中,Pb
2+
离子的激发来自于Yb
3+
离子三聚体的合作敏化。但是随着Pb
2+
离子掺杂浓度的提高,Yb
3+
离子三聚体遭到结构性破坏,导致其合作发光减弱。本文首次利用Pb
2+
离子掺杂造成Yb
3+
离子三聚体的结构性破坏,从而引起合作荧光猝灭,并对在CaF
2
基质中因其他二价离子的掺入而造成的Yb
3+
三聚体合作发光猝灭给予了合理的解释。
At room temperature
the ultraviolet (UV) upconversion emissions from CaF
2
:Pb
2+
Yb
3+
were observed under the excitation of 978 nm near infrared (NIR) laser. The upconversion emission peak is centered at 383 nm
which is ascribed to the
3
P
0
1
A
1g
(
1
S
0
) transition of Pb
2+
ions. Through the results of transient measurements
the upconversion process of Pb
2+
ions is confirmed. The energy transfer process is that three excited Yb
3+
ions simultaneously transfer their energy to one Pb
2+
ion. With the increasing of Pb
2+
concentration
the cooperative luminescence from Yb
3+
clusters decreases gradually. In order to explain this phenomenon
we propose a new cooperative luminescence quenching mechanism in this paper
which is originated from Pb
2+
induced structure destruction of Yb
3+
-trimers. The fluorescence quenching in Pb
2+
and Yb
3+
codoped CaF
2
is given a reasonable explanation.
SILVERSMITH A J, LENTH W, MACFARLANE R M. Green infrared pumped erbium upconversion laser[J]. Appl. Phys. Lett., 1987, 51:1977-1979.
MACFARLANE R M, TONG F, SILVERSMITH A J, et al.. Violet cw neodymium upconversion laser[J]. Appl. Phys. Lett., 1988, 52:1300-1302.
DANGER T, KOETKE J, BREDE R, et al.. Spectroscopy and green upconversion laser emission of Er3+-doped crystals at room temperature[J]. J. Appl. Phys., 1994, 76:1413-1422.
JOHNSON L F, GUGGENHEIM H J. Laser emission at 3 from Dy3+ in BaY2F8[J]. Appl. Phys. Lett., 1973, 23(2):96-98.
JOUBERT M F. Photon avalanche upconversion in rare earth laser materials[J]. Opt. Mater., 1999, 11:181-203.
SUYVER J F, AEBISCHER A, BINER D, et al.. Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion[J]. Opt. Mater., 2005, 27:1111-1130.
POLLNAU M, GAMELIN D R, LUTHI S R, et al.. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems[J]. Phys. Rev. B, 2000, 61:3337-3346.
SONG E H, DING S, WU M, et al.. Anomalous NIR Luminescence in Mn2+-doped fluoride perovskite nanocrystals[J]. Adv. Opt. Mater., 2014, 2:670-678.
WANG L L, XUE X J, SHI F, et al.. Ultraviolet and violet upconversion fluorescence of europium (Ⅲ) doped in YF3 nanocrystals[J]. Opt. Lett., 2009, 34:2781-2783.
SONG E H, DING S, WU M, et al.. Temperature-tunable upconversion luminescence of perovskite nanocrystals KZnF3:Yb3+, Mn2+[J]. J. Mater. Chem. C, 2013, 1:4209-4215.
ZHANG J H, HAO Z D, LI J, et al.. Observation of efficient population of the red-emitting state from the green state by non-multiphonon relaxation in the Er3+-Yb3+ system[J]. Light:Sci. Appl., 2015, 4:e239.
HUANG F F, LIU X Q, MA Y Y, et al.. Origin of near to middle infrared luminescence and energy transfer process of Er3+/Yb3+co-doped fluorotellurite glasses under different excitations[J]. Sci. Rep.-UK, 2015, 5:8233.
WEI T, TIAN Y, CHEN F Z, et al.. Mid-infrared fluorescence, energy transfer process and rate equation analysis in Er3+ doped germanate glass[J]. Sci. Rep.-UK, 2014, 4:6060.
STREK W, CICHY B, RADOSINSKI L, et al.. Laser-induced white-light emission from graphene ceramics-opening a band gap in graphene[J]. Light:Sci. Appl., 2015, 4:e237.
AUZEL F. Upconversion and anti-stokes processes with f and d ions in solids[J]. Chem. Rev., 2004, 104:139-173.
JOSHI C P, MOHARIL S V. Luminescence of Pb2+ in some aluminates prepared by combustion synthesis[J]. Phys. Stat. Sol. B, 2000, 220:985-989.
FOLKERTS H F, ZUIDEMA J, BLASSE G. The luminescence of Pb2+ in lead compounds with one-dimensional chains[J]. Solid State Commun., 1996, 99:655-658.
FOLKERTS H F, BLASSE G. Two types of luminescence from Pb2+ in alkaline-earth carbonates with the aragonite structure[J]. Phys. Chem. Solids, 1996,57:303-306.
LESKELA M. Luminescence properties of Eu2+,Sn2+,and Pb2+ in SrB6010 and Sr1-xMnxB6O10[J]. J. Solid State Chem., 1985, 59:272-279.
ANDERSON D F, KIERSTEAD J A, PAUL LECOQ, et al.. A search for scintillation in doped and orthorhombic lead fluoride[J]. Nucl. Instrum. Methods Phys. Res. A, 1994, 342:473-476.
JACOBS P W M. Alkali halide crystals containing impurity ions with the ns2 ground-state electronic[J]. J. Phys. Chem. Solids. 1991, 52:35-67.
PEJCHAL J, MIHOKOVA E, NIKL M, et al.. Luminescence and decay kinetics of Pb2+ center in LiCaAlF6 single crystal host[J]. Opt. Mater., 2009, 31:1673-1677.
KAZANSKⅡ S A, RYSKINA I, NIKIFOROVA E, et al.. EPR spectra and crystal field of hexamer rare-earth clusters in fluorites[J]. Phys. Rev. B, 2005, 72:014127-1-11.
CHERNYSHEV V A, NIKIFOROV A E, NAZEMNIKH A D. Hexamer clusters in MeF2:Yb3+ (Me=Ca, Sr, Ba)[J]. J. Phys. Conf. Ser., 2011, 324:012025-9.
VARSANYI F, DIEKE G H. Ion-pair resonance mechanism of energy transfer in rare earth crystal fluorescence[J]. Phys. Rev. Lett., 1961, 7:442-443.
NAKAZAWA E. Cooperative luminescence in YbPO4[J]. Phys. Rev. Lett., 1970, 25:1710-1712.
WANG J, DENG R R, MAC DONALD M A, et al.. Enhancing multiphoton upconversion through energy clustering at sublattice level[J]. Nat. Mater., 2014, 13:157-162.
WEI X T, ZHAO J B, ZHANG W P, et al.. Cooperative energy transfer in Eu3+, Yb3+ codoped Y2O3 phosphor[J]. J. Rare Earth, 2010, 28:166-170.
JIANLI H, ZHIGUANG Z, HUAN Z, et al.. Intense red fiuorescence from Ho/Yb codoped tellurite glasses[J]. J. Non-Cryst. Solids, 2014, 383:157-160.
ZHANG W J, CHEN Q J, QIAN Q, et al.. Cooperative energy transfer in Tb3+/Yb3+-and Nd3+/Yb3+/Tb3+-codoped oxyfiuoride glasses[J]. Physica B, 2010, 405:1062-1066.
QIN W P. Cooperative Luminescence of Yb3+ Ions[C]. 18th International Conference on Dynamical Processes in Excited States of Solids, Fuzhou, China, 2013.
QIN W P, LIU Z Y, SIN C N, et al.. Multi-ion cooperative processes in Yb3+ clusters[J]. Light:Sci. Appl., 2014, 3:e193.
QIN W P, CHOLNAM S, LIU Z Y, et al.. Theory on cooperative quantum transitions of three identical lanthanide ions[J]. J. Opt. Soc. Am. B, 2015, 32:303-308.
STEF M, NICOARA I, STEF F. Dielectric relaxation in ytterbium- and lead-doped calcium fluoride crystals[J]. Eur. Phys. J. B, 2013, 86:152-1-8.
NICOARA I, MUNTEANU M, PECINGINA-GARJOABA N, et al.. Dielectric relaxation in PbF2-doped and X-ray irradiated CaF2 crystals[J]. ECS Transactions, 2006, 3:51-58.
ANDEENI C G, FONTANELLA J J, WINTERSGILLT M C, et al.. Clustering in rare-earth-doped alkaline earth fluorides[J]. J. Phys. C:Solid State Phys., 1981, 14:3557-3574.
CORISH J. Defect aggregation in anion-excess fluorites dopant monomers and dimers[J]. Phys. Rev. B, 1982, 25:6425-6438.
DRYDEN J S, HEYDON R G. Ultraviolet A-band absorption in NaCl:Pb2+ and clustering of lattice defects[J]. J. Phys. C:Solid State Phys., 1983, 16:5363-5373.
PARASCHIVA M, NICOARA I, STEF M, et al.. Distribution of Pb2+ ions in PbF2-doped CaF2 crystals[J]. Acta Phys. Pol. A, 2010, 117:466-470.
0
Views
133
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution