Defects Luminescence Behavior of β-Ga2O3 Nanostructures Synthesized by Chemical Vapor Deposition
|更新时间:2020-08-12
|
Defects Luminescence Behavior of β-Ga2O3 Nanostructures Synthesized by Chemical Vapor Deposition
Chinese Journal of LuminescenceVol. 38, Issue 10, Pages: 1273-1279(2017)
作者机构:
东北师范大学 紫外光发射材料与技术教育部重点实验室,吉林 长春,130024
作者简介:
基金信息:
Supported by National Natural Science Foundation of China(91233204,51202026,91233204,51372035,51422201);Science and Technology Development Plan of Jilin Province (20140309012GX,20140201008GX);Doctoral Program of Higher Education Institution of The Ministry of Education (20110043120004,20120043110002,20130043110004)。
XUE Jin-ling, MA Jian-gang,. Defects Luminescence Behavior of &beta;-Ga<sub>2</sub>O<sub>3</sub> Nanostructures Synthesized by Chemical Vapor Deposition[J]. Chinese Journal of Luminescence, 2017,38(10): 1273-1279
XUE Jin-ling, MA Jian-gang,. Defects Luminescence Behavior of &beta;-Ga<sub>2</sub>O<sub>3</sub> Nanostructures Synthesized by Chemical Vapor Deposition[J]. Chinese Journal of Luminescence, 2017,38(10): 1273-1279 DOI: 10.3788/fgxb20173810.1273.
Defects Luminescence Behavior of β-Ga2O3 Nanostructures Synthesized by Chemical Vapor Deposition
nanowires (NWs) and nanoribbons (NBs) were synthesized under different gas flow rates
via
chemical vapor deposition (CVD) method. The results show that the NWs and NBs are monoclinic structure. NWs has higher crystal quality than NBs. The cathode luminescence (CL) spectra show that the NWs and NBs have strong UV-blue emission band. By comparing the CL spectra of the NWs and NBs
it is found that the UV and blue luminescence of -Ga
2
O
3
NWs and NBs located at 374 and 459 nm
mainly due to radiative recombination emission of oxygen vacancies (V
O(Ⅰ)
and V
O(Ⅱ)
).
关键词
Keywords
references
FENG H, HAO W, ZHAO C, et al.. Fabrication and UV-sensing properties of one-dimensional -Ga2O3 nanomaterials[J]. Phys. Stat. Sol. (a), 2013, 210(9):1861-1865.
LI Y, TOKIZONO T, LIAO M, et al.. Efcient assembly of bridged -Ga2O3 nanowires for solar-blind photodetection[J]. Adv. Funct. Mater., 2010, 20(22):3972-3978.
HARWIG T, KELLENDONK F, SLAPPENDEL S. The ultraviolet luminescence of -galliumsesquioxide[J]. J. Phys. Chem. Solids, 1978, 39(6):675-680.
BINET L, GOURIER D. Origin of the blue luminescence of -Ga2O3[J]. J. Phys. Chem. Solids, 1998, 59(8):1241-1249.
GUZMAN-NAVARRO G, HERRERA-ZALDIVAR M, VALENZUELA-BENAVIDES J, et al.. CL study of blue and UV emissions in -Ga2O3 nanowires grown by thermal evaporation of GaN[J]. J. Appl. Phys., 2011, 110(3):034315.
KUMAR S, KUMAR V, SINGH T, et al.. The effect of deposition time on the structural and optical properties of -Ga2O3 nanowires grown using CVD technique[J]. J. Nanopart. Res., 2014, 16(1):2189.
VLLORA E G, SHIMAMURA K, YOSHIKAWA Y, et al.. Electrical conductivity and carrier concentration control in -Ga2O3 by Si doping[J]. Appl. Phys. Lett., 2008, 92(20):202120.
KUMAR S, SINGH R. Nanofunctional gallium oxide (Ga2O3) nanowires/nanostructures and their applications in nanodevices[J]. Phys. Stat. Sol. (RRL), 2013, 7(10):781-792.
LEE Y H, CHOI Y C, KIM W S, et al.. Interleukin-induced tyrosine phosphorylation of phospholipase C-1 in cells[J]. Mol. Cells, 2000:469-474.
HAN N, WANG F, YANG Z, et al.. Low-temperature growth of highly crystalline -Ga2O3 nanowires by solid-source chemical vapor deposition[J]. Nanoscale Res. Lett., 2014, 9(1):1-6.
CHOI K H, CHO K K, CHO G B, et al.. The growth behavior of -Ga2O3 nanowires on the basis of catalyst size[J]. J. Cryst. Growth, 2009, 311(4):1195-1200.
DOHY D, LUCAZEAU G, REVCOLEVSCHI A. Raman spectra and valence force field of single-crystalline -Ga2O3[J]. J. Solid State Chem., 1982, 45(2):180-192.
SHI F, ZHANG S, XUE C. Influence of annealing time on microstructure of one-dimensional Ga2O3 nanorods[J]. J. Alloys Compd., 2010, 498(1):77-80.
XU Q, ZHANG S. Fabrication and photoluminescence of -Ga2O3 nanorods[J]. Superlatt. Microstruct., 2008, 44(6):715-720.
THOMAS S R, ADAMOPOULOS G, LIN Y H, et al.. High electron mobility thin-film transistors based on Ga2O3 grown by atmospheric ultrasonic spray pyrolysis at low temperatures[J]. Appl. Phys. Lett., 2014, 105(9):092105.
HAJNAL Z, MIR J, KISS G, et al.. Role of oxygen vacancy defect states in the n-type conduction of -Ga2O3[J]. J. Appl. Phys., 1999, 86(7):3792-3796.
ZHAO Y N, YAN J L. First-principles study of n-type tin/fluorine co-doped beta-gallium oxides[J]. J. Semicond., 2015, 36(8):082004.
YAN J L, QU C. Electronic structure and optical properties of F-doped -Ga2O3 from first principles calculations[J]. J. Semicond., 2016, 37(4):042002.
VARLEY J B, WEBER J R, JANOTTI A, et al.. Oxygen vacancies and donor impurities in -Ga2O3[J]. Appl. Phys. Lett., 2010, 97(14):142106.
TIEN L C, HO C H, YAO X T, et al.. Synthesis of -Ga2O3 nanowires as a broadband emitter[J]. Appl. Phys. A:Mater. Scie. Proc., 2011, 102(1):105-108.
TIEN L C, TSENG C C, HO C H. Cathodoluminescence and field-emission properties of -Ga2O3 nanobelts[J]. J. Electron. Mater., 2012, 41(11):3056-3061.
SONG Y P, ZHANG H Z, LIN C, et al.. Luminescence emission originating from nitrogen doping of -Ga2O3 nanowires[J]. Phys. Rev. B, 2004, 69(7):075304.
WANG G, LUO G, SOO Y L, et al.. Phase stabilization in nitrogen-implanted nanocrystalline cubic zirconia[J]. Phys. Chem. Chem. Phys., 2011, 13(43):19517-19525.