浏览全部资源
扫码关注微信
1. 发光学及应用国家重点实验室 中国科学院长春光学精密机械与物理研究所,吉林 长春,130033
2. 运城学院 物理与电子工程系,山西 运城,044000
Received:08 July 2017,
Revised:15 August 2017,
Published Online:21 August 2017,
Published:05 October 2017
移动端阅览
贾明理, 张家骅,. 阳离子交换增强&beta;-NaGdF<sub>4</sub>:Yb<sup>3+</sup>,Tm<sup>3+</sup>纳米晶近红外发光[J]. 发光学报, 2017,38(10): 1267-1272
JIA Ming-li, ZHANG Jia-hua,. NIR Enhancement of &beta;-NaGdF<sub>4</sub>:Yb<sup>3+</sup>, Tm<sup>3+</sup> Nanocrystals <em>via</em> Cation Exchange Reaction[J]. Chinese Journal of Luminescence, 2017,38(10): 1267-1272
贾明理, 张家骅,. 阳离子交换增强&beta;-NaGdF<sub>4</sub>:Yb<sup>3+</sup>,Tm<sup>3+</sup>纳米晶近红外发光[J]. 发光学报, 2017,38(10): 1267-1272 DOI: 10.3788/fgxb20173810.1267.
JIA Ming-li, ZHANG Jia-hua,. NIR Enhancement of &beta;-NaGdF<sub>4</sub>:Yb<sup>3+</sup>, Tm<sup>3+</sup> Nanocrystals <em>via</em> Cation Exchange Reaction[J]. Chinese Journal of Luminescence, 2017,38(10): 1267-1272 DOI: 10.3788/fgxb20173810.1267.
为了增强-NaGdF
4
:Yb
3+
,Tm
3+
纳米晶的上转换发光,克服外延增长钝化壳增大尺寸的不足,利用阳离子交换法制备核壳纳米结构,研究了样品在980 nm激发下的上转换发光性质。首先,利用高温热分解法制备了直径为10 nm的-NaGdF
4
:Yb
3+
,Tm
3+
纳米晶;然后,将制备的纳米晶与Gd
3+
在油酸-十八烯混合溶液中在300℃进行交换反应。实验结果表明,随着表面Yb
3+
和Tm
3+
被Gd
3+
取代,钝化壳的形成抑制了内部Yb
3+
的表面去激发过程,增强了内部Yb
3+
(
2
F
5
) Tm
3+
(
3
H
5
,
3
F
2,3
)的能量传递,上转换发光逐渐增强。交换30 min后,Tm
3+
的
3
H
4
3
H
6
近红外发光增强达到最大,为对照样品的6.5倍,而尺寸基本保持不变。在生物成像方面,上转换纳米晶的尺寸必须与生物分子相匹配,同时发光强度要高,阳离子交换法既能增强近红外发光,又能保持原来小的尺寸,在生物成像领域具有很好的应用前景。
In order to enhance upconversion luminescence of -NaGdF
4
:Yb
3+
Tm
3+
nanocrystals and meanwhile overcome the particle size enlargement caused by epitaxial growth technique
NaGdF
4
:Yb
3+
Tm
3+
@NaGdF
4
core-shell nanostructure was prepared using cation exchange strategy. The upconversion luminescence of the core-shell nanocrystals was investigated under 980 nm laser excitation. The oleate-capped
-
NaGdF
4
:Yb
3+
Tm
3+
nanocrystals with diameter about 10 nm were firstly prepared by thermal decomposition procedure. Then
the cation exchange reaction of the nanocrystals with Gd
3+
was performed in l-octadecene and oleic acid mixture solution at 300℃. Experimental results show that the cation exchange strategy has significantly enhanced upconversion luminescence brightness of the nanocrystals
which attribute to the suppression of inner Yb
3+
de-excitation by the cation exchange shell and the enhancement of energy transfer from Yb
3+
(
2
F
5
) to Tm
3+
(
3
H
5
3
F
2
3
) inside of the nanocrystals. The maximum improvement of NIR emission for Tm
3+
3
H
4
3
H
6
transition is achieved with 6.5 times than that of the contrast sample after 30 min of exchange reaction. It demonstrates that the cation exchange strategy can not only enhance NIR luminescence of the nanocrystals
but also well retain small particle size. It provides a simple and convenient way to development of high brightness upconversion nanocrystas with comparable in size to biomolecules
which has enormous applications in biomedical imaging fields.
CHEN X, JIN L M, KONG W, et al.. Confining energy migration in upconversion nanoparticles towards deep uptraviolet lasing[J]. Nat. Commun., 2016, 7:10304-10310.
DENG R R, QIN F, CHEN R F, et al.. Temporal full-colour tuning through non-steady-state upconvertion[J]. Nat. Nanotechnol., 2015, 10(3):237-242.
WANG K F, JIANG J Q, WAN S J, et al.. Upconversion enhancement of lanthanide-doped NaYF4 for quantum dot-sensitized solar cells[J]. Electrochim. Acta, 2015, 155:357-363.
ZHENG W, HUANG P, TU D T, et al.. Lanthanide-doped upconversion nano-bioprobes:electronic structures, optical properties, and biodetection[J]. Chem. Soc. Rev., 2015, 44(6):1379-1415.
LIU Y S, TU D T, ZHU H M, et al.. Lanthanide-doped luninescent nanoprobes:controlled synthesis, optical spectroscopy, and bioapplications[J]. Chem. Soc. Rev., 2013, 42(16):6924-6958.
DONG H, DU S R, ZHENG X Y, et al.. Lanthanide nanoparticles:from design toward bioimaging and therapy[J]. Chem. Rev., 2015, 115(19):10725-10815.
NADOR A, ZHAO J B, GOLDYS E M. Lanthanide upconversion luninescence at the nanoscale:fundamentals and optical properties[J]. Nanoscale, 2016, 8(27):13099-13130.
CHEN G Y, AGREN H, OHLCHANSKYY T Y, et al.. Light upconverting core-shell nanostructures:nanophotonic control for emerging applications[J]. Chem. Soc. Rev., 2015, 44(6):1680-1713.
LIU C Y, GAO Z Y, ZENG J F, et al.. Magnetic/upconversion fluorescent NaGdF4:Yb,Er nanoparticle-based dual-modal molecular probes for imaging tiny tumors in vivo[J]. ACS Nano, 2013, 7(8):7227-7240.
OSTROWSKI A D, CHAN E M, GARGAS D J, et al.. Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals[J]. ACS Nano, 2012, 6(3):2686-2692.
LOWE A R, SIEGEL J J, KALAB P, et al.. Selectivity mechanism of the nuclear pore complex characterized by singe cargo tracking[J]. Nature, 2010, 467(7315):600-603.
OKUHATA Y. Delivery of diagnostic agents for magnetic resonance imaging[J]. Adv. Drug Deliv. Rev., 1999, 37(1-3):121-137.
WANG F, WANG J, LIU X G. Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles[J]. Angew. Chem. Int. Ed., 2010, 49(41):7456-7460.
BOYER J C, VAN VEGGEL F C J M,. Absolute quantum yield measurements of colloidal NaYF4:Er3+,Yb3+ upconverting nanoparticles[J]. Nanoscale, 2010, 2(8):1417-1419.
CHEN G Y, QIU H L, PRASAD P N, et al.. Upconversion nanoparticles:design, nanochemistry, and applications in theranostics[J]. Chem. Rev., 2014, 114(10):5161-5241.
GAI S L, LI C X, YANG P P, et al.. Recent progress in rare earth micro/nanocrystals:soft chemical synthesis,luminescent properties, and biomedical applications[J]. Chem. Rev., 2014, 114(4):2343-2389.
YI G S, CHOW G M. Water-soluble NaYF4:Yb,Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence[J]. Chem. Mater., 2007, 19(3):341-343.
JOHNSON N J J, KORINEK A, DONG C H, et al.. Self-focusing by ostwald ripening:a strategy for layer-by-layer epitaxial growth on upconverting nanocrystals[J]. J. Am. Chem. Soc., 2012, 134(27):11068-11071.
ZHANG F, CHE R C, LI X M, et al.. Direct imaging the upconversion nanocrystal core/shell structure at upconverting optical properties[J]. Nano Lett., 2012, 12(6):2852-2858.
LI X M, SHEN D K, YANG J P, et al.. Successive layer-by-layer strategy for multi-shell epitaxial growth:shell thickness and doping position dependence in upconverting optical properties[J]. Chem. Mater., 2013, 25(1):106-112.
TRIZIO L D, MANNA L. Forging colloidal nanostructures via cation exchange reactions[J]. Chem. Rev., 2016, 116(18):10852-10887.
SON D H, HUGHES S M, YIN Y D, et al.. Cation exchange reaction in ionic nanocrystals[J]. Science, 2004, 306(5698):1009-1012.
ABEL K A, FITZGERALD P A, WANG T Y, et al.. Probing the structure of colloidal core/shell quantum dots formed by cation exchange[J]. J. Phys. Chem. C, 2012, 116(6):3968-3978.
ABEL K A, QIAO H J, YOUNG J F, et al.. Four-fold enhancement of the activation energy for nonradiative decay of excitons in PbSe/CdSe core/shell versus PbSe colloidal quantum dots[J]. J. Phys. Chem. Lett., 2010, 1(15):2334-2338.
YANG L W, LI Y, LI Y C, et al.. Quasi-seeded growth, phase transformation, and size tuning of multifunctional hexagonal NaLnF4(Ln=Y, Gd, Yb) nanocrystals via in situ cation exchange reaction[J]. J. Mater. Chem., 2012, 22(5):2254-2262.
DONG C H, VAN VEGGEL F C J M. Cation exchange in lanthanide fluoride nanoparticles[J]. ACS Nano, 2009, 3(1):123-130.
DONG C H, KORINEK A, BLASIAK B, et al.. Cation exchange:a facile method to make NaYF4:Yb,Tm-NaGdF4 core-shell nanoparticles with a thin, tunable and uniform shell[J]. Chem. Mater., 2012, 24(7):1297-1305.
DENG M L, WANG L Y. Unexpected luminescence enhancement of upconverting nanocrystals by cation exchange with well retained small particle size[J]. Nano Res., 2014, 7(5):782-793.
ZHANG X W, ZHAO Z, ZHANG X, et al.. Magnetic and optical properties of NaGdF4:Nd3+,Yb3+,Tm3+ nanocrystals with upconversion/downconversion luminescence from visible to the near-infrared second window[J]. Nano Res., 2015, 8(2):636-648.
XIANG G T, ZHANG J H, HAO Z D, et al.. Importance of suppression of Yb3+ de-excitation to upconversion enhancement in -NaYF4:Yb/Er@-NaYF4 sandwiched structure nanocrystals[J]. Inorg. Chem., 2015, 54(8):3921-3928.
ARPPE R, HYPPNEN I, PERL N, et al.. Quenching of the upconversion luminescence of NaYF4:Yb3+,Er3+ and NaYF4:Yb3+,Tm3+ nanophosphors by water:the role of the sensitizer Yb3+ in non-radiative relaxation[J]. Nanoscale, 2015, 7(27):11746-11757.
GARGAS D J, CHAN E M, OSTROWSKI A D, et al.. Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging[J]. Nat. Nanotechnol., 2014, 9(4):300-305.
HOSSAN M Y, HOR A, LUU Q A, et al.. Explaining the nanoscale effect in the upconversion dynamics of -NaYF4:Yb3+,Er3+ core and core-shell nanocrystals[J]. J. Phys. Chem. C, 2017, 121(30):16592-16606.
0
Views
42
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution