WANG Jin-ju, LIU Bao-sheng, BIAN Gang etc. Mechanism of Interaction Between Ceftazidime and Trypsin by Spectroscopic and Molecular Docking Methods[J]. Chinese Journal of Luminescence, 2017,38(9): 1256-1263
WANG Jin-ju, LIU Bao-sheng, BIAN Gang etc. Mechanism of Interaction Between Ceftazidime and Trypsin by Spectroscopic and Molecular Docking Methods[J]. Chinese Journal of Luminescence, 2017,38(9): 1256-1263 DOI: 10.3788/fgxb20173809.1256.
Mechanism of Interaction Between Ceftazidime and Trypsin by Spectroscopic and Molecular Docking Methods
The binding of ceftazidime (CFD) with trypsin (TRP) was investigated by spectroscopic and molecular docking methods under different temperature conditions (298
303 and 310 K). The results demonstrate that the interaction between CFD and TRP is taking place
via
static quenching with 1:1 binding ratio. The fluorescence data were treated by using the double logarithmic equation
and the binding constants
K
a
of the interaction of CFD-TRP systems and the number of binding sites
n
were obtained. The thermodynamic parameters of CFD-TRP systems under different temperatures were obtained by the thermodynamic equation. The experimental data show that the interactions between them are mainly hydrophobic interaction and hydrogen bonding interaction
which is consistent with the molecular docking results.
关键词
Keywords
references
李祥, 马承宣. 第三代头孢菌素的合理应用[J]. 中华医院感染学杂志, 1997, 7(3):187-189. LI X, MA C X. Reasonable application of the third generation cephalosporins[J]. Chin. J. Nosocomiol., 1997, 7(3):187-189. (in Chinese)
霍彩霞, 白林, 任建坚. 头孢他啶与牛血清白蛋白结合的光谱法研究[J]. 甘肃科学学报, 2008, 20(4):56-59. HUO C X, BAI L, REN J J. Interaction between ceftazidime and bovine serum albumin found by spectroscopy[J]. J. Gansu Sci., 2008, 20(4):56-59. (in Chinese)
GOMBOS L, KARDOS J, PATTHY A, et al.. Probing conformational plasticity of the activation domain of trypsin:the role of glycine hinges[J]. Biochemistry, 2008, 47(6):1675-1684.
GHOSH S. Interaction of trypsin with sodium dodecyl sulfate in aqueous medium:a conformational view[J]. Colloids Surf. B:Biointerf., 2008, 66(2):178-186.
KOUTSOPOULOS S, PATZSCH K, BOSKER W T E, et al.. Adsorption of trypsin on hydrophilic and hydrophobic surfaces[J]. Langmuir, 2007, 23(4):2000-2006.
STROUD R M, KAY L M, DICKERSON R E. The structure of bovine trypsin:electron density maps of the inhibited enzyme at 5 and at 2.7 resolution[J]. J. Mol. Biol., 1974, 83(2):185-208.
IBARZ A, GARVN A, GARZA S, et al.. Toxic effect of melanoidins from glucose-asparagine on trypsin activity[J]. Food Chem. Toxicol., 2009, 47(8):2071-2075.
DING K K, ZHANG H X, WANG H F, et al.. Atomic-scale investigation of the interactions between tetrabromobisphenol A, tetrabromobisphenol S and bovine trypsin by spectroscopies and molecular dynamics simulations[J]. J. Hazard. Mater., 2015, 299:486-494.
CHEN J M, MONTIER T, FREC C. Molecular pathology and evolutionary and physiological implications of pancreatitis-associated cationic trypsinogen mutations[J]. Hum. Genet., 2001, 109(3):245-252.
SONG W, YU Z H, HU X X, et al.. Dissection of the binding of hydrogen peroxide to trypsin using spectroscopic methods and molecular modeling[J]. Spectrochim. Acta A:Mol. Biomol. Spectrosc., 2015, 137:286-293.
LI X R, LI P H. Study on the interaction of -carotene and astaxanthin with trypsin and pepsin by spectroscopic techniques[J]. Luminescence, 2015, 31(3):782-792.
HE W, DOU H J, ZHANG L, et al.. Spectroscopic study on the interaction of trypsin with bicyclol and analogs[J]. Spectrochim. Acta A:Mol. Biomol. Spectrosc., 2014, 118:510-519.
GKOGLU E, YILMAZ E. Fluorescence interaction and determination of sulfathiazole with trypsin[J]. J. Fluoresc., 2014, 24(5):1439-1445.
刘保生, 闫潇娜, 曹世娜, 等. 头孢匹胺钠与牛血清白蛋白的相互作用机理及共存金属离子的影响[J]. 发光学报, 2012, 33(9):1018-1024. LIU B S, YAN X N, CAO S N, et al.. Interaction of cefpiramide sodium with bovine serum albumin and the effect of coexistent metal ion on the reaction[J]. Chin. J. Lumin., 2012, 33(9):1018-1024. (in Chinese)
YANG R, YU L L, ZENG H J, et al.. The interaction of flavonoid-lysozyme and the relationship between molecular structure of flavonoids and their binding activity to lysozyme[J]. J. Fluoresc., 2012, 22(6):1449-1459.
TIAN Z Y, ZANG F L, LUO W, et al.. Spectroscopic study on the interaction between mononaphthalimide spermidine (MINS) and bovine serum albumin(BSA)[J]. J. Photochem. Photobiol. B:Biol., 2015, 142:103-109.
BI S Y, DING L, TIAN Y, et al.. Investigation of the interaction between flavonoids and human serum albumin[J]. J. Mol. Struct., 2004, 703(1-3):37-45.
TOPRAK M, ARIK M. The investigation of the interaction between orientin and bovine serum albumin by spectroscopic analysis[J]. Luminescence, 2014, 29(7):805-809.
WANG Q, ZHANG S R, JI X H. Investigation of interaction of antibacterial drug sulfamethoxazole with human serum albumin by molecular modeling and multi-spectroscopic method[J]. Spectrochim. Acta A:Mol. Biomol. Spectrosc., 2014, 124:84-90.
ZHANG G W, CHEN X X, GUO J B, et al.. Spectroscopic investigation of the interaction between chrysin and bovine serum albumin[J]. J. Mol. Struct., 2009, 921(1-3):346-351.
SONG H, CHEN C Y, ZHAO S L, et al.. Interaction of gallic acid with trypsin analyzed by spectroscopy[J]. J. Food Drug Anal., 2015, 23(2):234-242.
ZHAO H W, GE M, ZHANG Z X, et al.. Spectroscopic studies on the interaction between riboflavin and albumins[J]. Spectrochim. Acta A:Mol. Biomol. Spectrosc., 2006, 65(3-4):811-817.
ROSS P D, SUBRAMANIAN S. Thermodynamics of protein association reactions:forces contributing to stability[J]. Biochemistry, 1981, 20(11):3096-3102.
SKLAR L A, HUDSON B S, SIMONI R D. Conjugated polyene fatty acids as fluorescent probes:binding to bovine serum albumin[J]. Biochemistry, 1977, 16(23):5100-5108.
JIN J, ZHANG X. Spectrophotometric studies on the interaction between pazufloxacin mesilate and human serum albumin or lysozyme[J]. J. Lumin., 2008, 128(1):81-86.
BERTUCCI C, DOMENICI E. Reversible and covalent binding of drugs to human serum albumin:methodological approaches and physiological relevance[J]. Curr. Med. Chem., 2002, 9(15):1463-1481.
刘保生, 韩荣, 李志云, 等. 硝基羟乙唑与溶菌酶反应机制的荧光光谱研究[J]. 发光学报, 2015, 36(12):1458-1463. LIU B S, HAN R, LI Z Y, et al.. Investigation of the interaction mechanism between lysozyme and trichazol using fluorescence spectroscopic method[J]. Chin. J. Lumin., 2015, 36(12):1459-1463. (in Chinese)
张国文, 王亚萍. 邻苯二甲酸二丁酯与胰蛋白酶的相互作用[J]. 吉首大学学报(自然科学学报), 2015, 36(1):46-51. ZHANG G W, WANG Y P. Interaction of dibutyl phosphate with trypsin[J]. J. Jishou Univ. (Nat. Sci. Ed.), 2015, 36(1):46-51. (in Chinese)
BHOGALE A, PATEL N, MARIAM J, et al.. Comprehensive studies on the interaction of copper nanoparticles with bovine serum albumin using various spectroscopies[J]. Colloids Surf. B Biointerf., 2014, 113:276-284.
ALI M S, AL-LOHEDAN H A, RAFIQUEE M Z A, et al.. Spectroscopic studies on the interaction between novel polyvinylthiol-functionalized silver nanoparticles with lysozyme[J]. Spectrochim. Acta A:Mol. Biomol. Spectrosc., 2015, 135:147-152.
贾悦, 杨洪芹, 郭刘奇, 等. 头孢克肟与胃蛋白酶相互作用的光谱法研究[J]. 化学研究与应用, 2016, 28(5):673-680. JIA Y, YANG H Q, GUO L Q, et al.. Investigation of interaction between cefixime and pepsin by spectroscopic methods[J]. Chem. Res. Appl., 2016, 28(5):673-680. (in Chinese)
曾华金, 李梦婷, 李晴, 等. 光谱法结合分子模拟技术研究左氧氟沙星与胃蛋白酶的相互作用机理[J]. 发光学报, 2016, 37(4):481-486. ZENG H J, LI M T, LI Q, et al.. Mechanism of interaction between levofloxacin and pepsin by spectroscopic and molecular docking methods[J]. Chin. J. Lumin., 2016, 37(4):481-486. (in Chinese)
Interaction of Pioglitazone Hydrochloride to Pepsin and Its Effect on Drug Efficiency and Digestive Ability of Stomach
Interaction Between Progesterone and Bovine Serum Albumin by Fluorescence Spectrum and Molecular Docking
Raman Spectra Enhancement of Dioxin-like Polychlorinated Biphenyls (PCBs) Based on Molecular Docking
Synthesis of Two Cinnamic Oxime Ester Derivatives and Their Interaction Mechanism with Human Serum Albumin
Interaction Dynamics Between Dacarbazine and DNA
Related Author
CHENG Xu
ZHANG Hong-cai
MA Li-hua
WANG Chun-dan
FAN Xing
YANG Shu-ling
LIAO Xian-ping
TUO Xun
Related Institution
Key Laboratory of Analytical Science and Technology of Hebei Province, National Chemistry Experimental Teaching Demonstration Center Hebei University, Key Laboratory of Pharmaceutical Chemistry and Molecular Diagnosis Ministry of Education
College of Chemistry, Nanchang University
School of Pharmacy, Nanchang University
College of Environmental Science and Engineering, North China Electric Power University
The Moe Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University