浏览全部资源
扫码关注微信
华北电力大学 电子与通信工程系,河北 保定,071003
Received:24 March 2017,
Revised:27 April 2017,
Published:05 September 2017
移动端阅览
孙正, 郑兰,. 定量光声层析成像的研究进展[J]. 发光学报, 2017,38(9): 1222-1232
SUN Zheng, ZHENG Lan,. Review on Progress of Quantitative Photoacoustic Tomography[J]. Chinese Journal of Luminescence, 2017,38(9): 1222-1232
孙正, 郑兰,. 定量光声层析成像的研究进展[J]. 发光学报, 2017,38(9): 1222-1232 DOI: 10.3788/fgxb20173809.1222.
SUN Zheng, ZHENG Lan,. Review on Progress of Quantitative Photoacoustic Tomography[J]. Chinese Journal of Luminescence, 2017,38(9): 1222-1232 DOI: 10.3788/fgxb20173809.1222.
光声层析(Photoacoustic tomography,PAT)成像结合了超声成像的高分辨率和光学成像的高对比度的优势,是一种新型的生物医学成像模式。PAT成像算法包含两个逆问题,即根据组织产生的光声信号构建初始声压分布图(即图像重建)以及在此基础上估算成像区域的光学特性参数。后者是一个非线性的不适定问题,通常称为定量光声层析(Quantitative photo-acoustic tomography,qPAT)成像。本文在介绍光声成像原理的基础上,对主要的qPAT算法进行综述,讨论各自的优势和不足,并对未来可能的发展方向进行展望。
Photoacoustic tomography (PAT)
an emerging medical imaging modality
combines the high resolution of ultrasonic imaging and high contrast of optical imaging. Current research on PAT includes two inverse problems
i.
e
.
constructing the distribution of initial acoustic pressures according to the photo-acoustic signals generated by the tissues and estimating the optical absorption and scattering coefficients of the tissues within the imaging region based on the results of the first inversion. The latter
known as quantitative photoacoustic tomography (qPAT)
is in general a nonlinear ill-posed problem. This paper summarizes current algorithms for solving the qPAT inversion. Related advantages and limits as well as perspective studies are discussed.
YAO J,WANG L V. Breakthroughs in photonics photoacoustic tomography[J]. IEEE Photon. J., 2014, 6(2):0701006.
NAM S Y, CHUNG E, SUGGSL J, et al.. Combined ultrasound and photoacoustic imaging to noninvasively assess burn injury and selectively monitor a regenerative tissue-engineered construct[J]. Tissue Eng. Part C:Methods, 2015, 21(6):557-566.
WANG L V, GAO L. Photoacoustic microscopy and computed tomography:from bench to bedside[J]. Annu. Rev. Biomed. Eng., 2014, 11(16):155-185.
NUSTER R, GRATT S, PASSLER K, et al.. Photoacoustic section imaging using an elliptical acoustic mirror and optical detection[J]. J. Biomed. Opt., 2012, 17(3):99-106.
LAUFER J, JOHNSON P, ZHANG E, et al.. In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy[J]. J. Biomed. Opt., 2012, 17(5):449-450.
ANSARI R, ZHANG E, MATHEWS S, et al.. Photoacoustic endoscopy probe using a coherent fiber-optic bundle[J] SPIE Bios., 2016, 142(10):97080L
BILLEH Y N, LIU M, BUMA T. Spectroscopic photoacousti microscopy using a photonic crystal fiber supereontinuum source[J]. Opt. Express, 2010, 18(18):18519-18524.
MALONE E, POWELL S, COX B T, et al.. Reconstruction-classification method for quantitative photoacoustic tomography[J]. J. Biomed. Opt., 2015, 20(12):126004.
SONG H, WANG L V. Optical-resolution photoacoustic microscopy auscultation of biological systems at the cellular level[J]. Biophys. J., 2013, 105(4):841-847.
LUTZWEILER C, DEN-BEN X L, RAZANSKY D. Expediting model-based optoacoustic reconstructions with tomographic symmetries[J]. Med. Phys. 2014, 41(1):013302.
KUCHMENT P, KUNYANSKY L. Mathematics of photoacoustic and thermoacousic tomography[J]. Eur. J. Appl. Math., 2009, 2(19):817-866.
孙正, 韩朵朵, 王健健. 血管内光声成像图像重建的研究现状[J]. 光电工程, 2015, 42(3):20-27. SUN Z, HAN D D, WANG J J. Review of image reconstruction for intravascular photoacoustic imaging[J]. Optoelect. Eng., 2015, 42(3):20-27. (in Chinese)
SONG N, DEUMIC C, DAS A. Considering sources and detectors distributions for quantitative photoacoustic tomography[J]. Biomed. Opt. Express, 2014, 5(11):3960-3974.
GAO H, OSHER S, ZHAO H. Mathematical Modeling in Biomedical Imaging Ⅱ[M] Berlin/Heidelberg:Springer, 2012131-158.
GAO H, ZHAO H, OSHER S. Bregman methods in quantitative photoacoustic tomography[J]. Cam. Rep., 2010, 30(6):3043-3054.
COX B, LAUFER J G, ARRIDGES R, et al.. Quantitative spectroscopic photoacoustic imaging:a review[J]. J. Biomed. Opt., 2012, 17(6):ID 061202.
孙正, 苑园,王健健. 血管内光声成像的研究进展[J]. 中国生物医学工程学报, 2015, 34(2):221-228. SUN Z, YUAN Y, WANG J J. Progress of intravascular photoacoustic imaging[J] Chin. J. Biomed. Eng., 2015, 34(2):221-228. (in Chinese).
COX B T, ARRIDGE S R, KOSTLI K P, et al.. Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method[J]. Appl. Opt., 2006, 45(8):1866-1875
BANERJEE B, BAGCHI S, VASU R M, et al.. Quantitative photoacoustic tomography from boundary pressure measurements:non-iterative recovery of optical absorption coefficient from the reconstructed absorbed energy map[J]. J. Opt. Soc. Am. A. 2008, 25(9):2347-2356.
LI S, MONTCEL B, YUAN Z, et al.. Multigrid-based reconstruction algorithm for quantitative photoacoustic tomography[J]. Biomed. Opt. Express, 2015, 6(7):2424-2434.
TARVAINEN T, COX B T, KAIPIO J P, et al.. Reconstructing absorption and scattering distributions in quantitative photoacoustic tomography[J]. Inverse Probl., 2012, 28(8):1067-1079.
TARVAINEN T. Computational Methods for Light Transport in Optical Tomography[D]. Kuopio:University of Kuopio, 2006.
SARATOON T, TARVAINEN T, COX B T, et al.. A gradient-based method for quantitative photoacoustic tomography using the radiative transfer equation[J]. Inverse Probl., 2013, 29(7):75006-75024.
LI S, MONTCEL B, LIU W, et al.. Analytical model of optical fluence inside multiple cylindrical inhomogeneities embedded in an otherwise homogeneous turbid medium for quantitative photoacoustic imaging[J]. Opt. Express, 2014, 22(17):20500-20514.
肖嘉莹. 定量光声成像技术及在骨关节炎诊断的研究[D]. 长沙:中南大学, 2011. XIAO J Y. Quantitative Photoaeoustie Tomography and Its Application to The Diagnosis of Osteoarthritis[D] Changsha:Central South University, 2011. (in Chinese)
KUCHMENT P. The Mathematical Legacy of Leon Ehrenpreis[M]. Milan:Springer, 2012:183.
SCHWEIGER M, ARRIDGE S R, NISSILA I. Gauss-Newton method for image reconstruction in diffuse optical tomography[J]. Phys. Med. Biol., 2005, 50(10):2365-2386.
COX B T, TARVAINEN T, ARRIDGE S. Multiple illumination quantitative photoacoustic tomography using transport and diffusion models[C] Proceedings of International Conference on Tomography and Inverse Transport Theory, USA, Mathematical Soc., 2011.
COX B T, ARRIDGE S R, BEARD P C. Gradient-based quantitative photoacoustic image reconstruction for molecular imaging[C]. Proceedings of SPIE International Conference on Photons Plus Ultrasound:Imaging and Sensing. SPIE-Int Soc.. Optical Engineering, San Jose, California, United States, 2007.
BAL G, REN K. On multi-spectral quantitative photoacoustic tomography in diffusive regime[J]. Inverse Probl., 2012, 28(2):025010-25022.
MAMONOV AV, REN K. Quantitative photoacoustic imaging in radiative transport regime[J]. Commun. Math. Sci., 2012, 12(2):201-234
SOONTHORNSARATOON T. Gradient-based Methods for Quantitative Photoacoustic Tomography[D]. London:University College London, 2014.
NOCEDAL J. Numerical Optimization (Springer Series in Operations Research and Financial Engineering)[M]. New York:Springer, 2006:134.
BAL G, Uhlmann G. Inverse diffusion theory of photoacoustics[J]. Inverse Probl., 2009, 6(8):1407-1426.
KLOSE A, HIELSCHERA H. Optical tomographic image reconstruction with quasi-Newton methods[J]. Inverse Probl., 2003, 19(2):387-409.
CEZARO A D, CEZARO F T D. Regularization approaches for quantitative photoacoustic tomography using the radiative transfer equation[J]. J. Math. Anal. Appl., 2015, 429(1):415-438.
GAO H, ZHAO H. Multilevel bioluminescence tomography based on radiative transfer equation Part 1:l1 regularization[J]. Opt. Express, 2010, 18(3):1854-1871.
GAO H, ZHAO H. Multilevel bioluminescence tomography based on radiative transfer equation Part 2:total variation and l1 data fidelity[J]. Opt. Express, 2010, 18(3):2894-2912.
GRASMAIR M, GROSSAUER H, Haltmeier M, et al.. Variational Methods in Imaging[M]. New York:Springer, 2009:294.
NEATER W, SCHERZER O. Quantitative photoacoustic tomography with piecewise constant material parameters[J]. SIAM. J. Imaging Sci., 2014, 7(3):1755-1774.
BERETTA E, MUSZKIETA M, NAETAR W, et al.. A variational method for quantitative photoacoustic tomography with piecewise constant coefficients[J]. Preprint ArXiv, 2015:1509.04982.
CEZARO A D, LEITO A, TAI X C. On piecewise constant level-set (pcls) methods for the identification of discontinuous parameters in ill-posed problems[J]. Inverse Probl., 2013, 29(1):015003.
JIANG H, YUAN Z, YIN L, et al.. Quantitative photoacoustic tomography:recovery of optical absorption coefficient maps of heterogeneous media[C]. SPIE 8th Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics. Photons Plus Ultrasound:Imaging and Sensing, SPIE-Int Soc. Optical Engineering, San Jose, California, United States, 2007.
KALTENBACHER B, NEUBAUER A, SCHERZER O. Iterative regularization methods for nonlinear ill-posed problems[C]. Radon Series on Computational and Applied Mathematics, Berlin, 2008.
ELVETUN O L, NIELSEN B F. The split Bregman algorithm applied to PDE-constrained optimization problems with total variation regularization[J]. Comput. Optim. Appl., 2016, 64(3):699-724.
AMMARI H, BOSSY E, JUGNON V, et al.. Reconstruction of the optical absorption coefficient of a small absorber from the absorbed energy density[J]. SIAM J. Appl. Math., 2011, 71(3):676-693.
BERGOUNIOUX M, SCHWINDT E L. On the uniqueness and stability of an inverse problem in photo-acoustic tomography[J]. J. Math. Anal. Appl., 2015, 431(2):1138-1152.
ZEMP R J. Quantitative photoacoustic tomography with multiple optical sources[J]. Appl. Opt., 2010, 49(18):3566-3572.
BAL G, REN K. Multi-source quantitative photoacoustic tomography in a diffusive regime[J]. Inverse probl., 2011, 27(7):75003-75022.
BAL G, UHLMANN G. Inverse diffusion theory for photoacoustics[J]. Inverse Probl., 2010, 26(8):25021-25032.
SHAO P, HARRISON T, ZEMP R J. Iterative algorithm for multiple illumination photoacoustic tomography (MIPAT) using ultrasound channel data[J]. Biomed. Opt. Express, 2012, 3(12):3240-3249
COX B T, ARRIDGE S R, BEARD P C. Estimating chromophore distributions from multiwavelength photoacoustic images[J]. J. Opt. Soc. Am. A, 2009, 26(2):443-455.
BAL G, JOLLIVET A, JUGNON V. Inverse transport theory of photoacoustics[J]. Inverse Probl., 2010, 26(2):25011-25045.
BAL G, REN K. On multi-spectral quantitative photoacoustic tomography in diffusive regime[J]. Inverse Probl., 2012, 28(2):25010-25022.
REN K, GAO H, ZHAO H. A hybrid reconstruction method for quantitative PAT[J]. SIAM J. Imaging Sci. 2013, 6(1):32-55.
BAUER A Q, NOTHDURFT R E, ERPELDING TN, et al.. Quantitative photoacoustic imaging:correcting for heterogeneous light fluence distributions using diffuse optical tomography[J]. J. Biomed. Opt., 2011, 16(9):096016.
RAJIAN J R, CARSON P L, WANG X. Quantitative photoacoustic measurement of tissue optical absorption spectrum aided by an optical contrast agent[J]. Opt. Express, 2009, 17(6):4879-4889.
DaOUDI K, HUSSAIN A, HONDEBRINK E, et al.. Correcting photoacoustic signals for fluence variations using acousto-optic modulation[J]. Opt. Express, 2012, 20(13):14117-14129.
DING T, REN K, VALLELIAN S. A one-step reconstruction algorithm for quantitative photoacoustic imaging[J]. Inverse Probl., 2015, 31(9):65003-65023.
HALTMEIER M, NEUMANN L, RABANSER S. Single-stage reconstruction algorithm for quantitative photoacoustic tomography[J]. Inverse Probl., 2015, 31(6):65005-65028.
YUAN Z, JIANG H B. A calibration-free, one-step method for quantitative photoacoustic tomography[J]. Med. Phys., 2012, 39(11):6895-6899.
JIANG H B, ZHANG Q Z, YUAN Z, et al.. Simultaneous reconstruction of acoustic and optical properties of heterogeneous media by quantitative photoacoustic tomography[J]. Opt. Express, 2006, 14(15):6749-6754.
RONDI L, SANTOSA F. Enhanced electrical impedance tomography via the mumford-shah functional[J]. Esaim Contr. Optim., 2000, 6(6):517538.
KIRSCH A. An Introduction to The Mathematical Theory of Inverse Problems[M]. New York:Springer, 1996:234
殷杰,陶超,刘晓峻. 多参量光声成像及其在生物医学领域的应用[J]. 物理学报, 2015, 64(9):098102. YIN J, TAO C, LIU X J. Multi-parameter photoacoustic imaging and its application in biomedicine[J]. Acta Phys. Sinica, 2015, 64(9):098102. (in Chinese)
苗少峰, 杨虹, 黄远辉, 等. 光声成像研究进展[J]. 中国光学, 2015, 8(5):699-713. MIAO S F, YANG H, HUANG Y H, et al.. Research progresses of photoacoustic imaging[J]. Chin. Opt., 2015, 8(5):699-713. (in Chinese)
0
Views
262
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution