浏览全部资源
扫码关注微信
天津三安光电有限公司 天津,300387
Received:17 February 2017,
Revised:30 April 2017,
Published Online:22 June 2017,
Published:05 September 2017
移动端阅览
王笃祥, 李明阳, 毕京锋等. 轻质柔性GaInP/Ga(In)As/Ge三结太阳电池及其性能研究[J]. 发光学报, 2017,38(9): 1217-1221
WANG Du-xiang, LI Ming-yang, BI Jing-feng etc. Low-weight Flexible GaInP/Ga(In)As/Ge Triple-junction Solar Cell and Its Performance[J]. Chinese Journal of Luminescence, 2017,38(9): 1217-1221
王笃祥, 李明阳, 毕京锋等. 轻质柔性GaInP/Ga(In)As/Ge三结太阳电池及其性能研究[J]. 发光学报, 2017,38(9): 1217-1221 DOI: 10.3788/fgxb20173809.1217.
WANG Du-xiang, LI Ming-yang, BI Jing-feng etc. Low-weight Flexible GaInP/Ga(In)As/Ge Triple-junction Solar Cell and Its Performance[J]. Chinese Journal of Luminescence, 2017,38(9): 1217-1221 DOI: 10.3788/fgxb20173809.1217.
为了研究柔性太阳能电池的性能,通过太阳能电池减薄工艺制备出轻质柔性GaInP/Ga(In)As/Ge三结太阳能电池芯片。尺寸为40 mm60 mm的电池芯片重量为0.7 g,仅为常规175 m厚度电池重量的30%。验证了柔性电池工艺的可行性,制得的柔性电池转换效率达到了30.64%,同常规厚度电池十分接近。对比测试了两种样品不同温度下的暗电流曲线,拟合了两种电池样品的温度系数,结果表明:电池的温度系数与衬底类型无关,只与电池PN结本身相关。
In order to study the performance of flexible solar cells
low-weight flexible GaInP/Ga(In)As/Ge triple-junction solar cell was fabricated by thinning process. The weight of the 40 mm60 mm solar cell chip is 0.7 g
which is only 30% of the conventional solar cell with the thickness of 175 m. The conversion efficiency of this kind of solar cell is 30.64%
closing to that of the normal thickness chips. The results show the feasibility of this thinning process. For both samples with different chips thickness
under different temperature
the dark I-
V
curves were measured and the temperature coefficients were fitted. It can be concluded that the temperature coefficient is linearly correlated to the PN junction rather than the substrate type.
郁济敏, 赵志国. 国外空间多结太阳电池技术进展[J]. 电源技术, 2015, 39(6):1340-1343. YU J M, ZHAO Z G. Development of space multi-junction solar cells at abroad[J]. Chin. J. Power Sources, 2015, 39(6):1340-1343. (in Chinese)
KING R R, FETZER C M, LAW D C, et al.. Advanced Ⅲ-Ⅴ multijunction cells for space[C]. Proceedings of The Conference Record of The 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, Waikoloa, HI, USA, 2006:1757-1762.
HOHEISEL R, MESSENGER S R, LUMB M P, et al.. Solar cell experiments for space:past, present and future[C]. Proceedings of SPIE 8620, Physics, Simulation, and Photonic Engineering of Photovoltaic Devices Ⅱ, San Francisco, California, USA, 2013.
CHIU P T, LAW D C, WOO R L, et al.. Direct semiconductor bonded 5J cell for space and terrestrial applications[J]. IEEE J. Photovolt., 2014, 4(1):493-497.
CHIU P T, LAW D C, SINGER S B, et al.. High performance 5J and 6J direct bonded (SBT) space solar cells[C]. Proceedings of The 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), New Orleans, LA, USA, 2015:1-3.
KOSTLER W, MEUSEL M, KUBERA T, et al.. Tripple junction solar cells with 30.0% efficiency and next generation cell concepts[C]. Proceedings of The 9th European Space Power Conference, Noordwijk, Netherlands, 2011.
STROBL G, DIETRICH R, HILGARTH J, et al.. Advanced GaInP/Ga(In)As/Ge triple junction space solar cells[C]. Proceedings of The World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 2003, 1:658-661.
TSENG M C, HORNG R H, TSAI Y L, et al.. Fabrication and characterization of GaAs solar cells on copper substrates[J]. IEEE Electron Dev. Lett., 2009, 30(9):940-942.
TAKAMOTO T, KODAMA T, YAMAGUCHI H, et al.. Paper-thin InGaP/GaAs solar cells[C]. Proceedings of The Conference Record of The 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, Waikoloa, HI, USA, 2006:1769-1772.
EDMONDSON K M, LAW D C, GLENN G, et al.. Flexible Ⅲ-Ⅴ multijunction solar blanket[C]. Proceedings of The Conference Record of The 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, Waikoloa, HI, USA, 2006:1935-1938.
薛超, 姜明序, 高鹏, 等. 柔性砷化镓太阳电池[J]. 电源技术, 2015, 39(7):1554-1557. XUE C, JIANG M X, GAO P, et al.. Thin film GaAs solar cells[J]. Chin. J. Power Sources, 2015, 39(7):1554-1557. (in Chinese)
邹凤君, 范思大, 谢强, 等. 掺杂石墨烯量子点对P3HT:PCBM太阳能电池性能的影响[J]. 发光学报, 2016, 37(9):1082-1089. ZOU F J, FAN S D, XIE Q, et al.. Effect of doping graphene quantum dots on the performance of P3HT:PCBM solar cells[J]. Chin. J. Lumin., 2016, 37(9):1082-1089. (in Chinese)
BLAKERS A W, ARMOUR T. Flexible silicon solar cells[J]. Solar Energy Mater. Solar Cells, 2009, 93(8):1440-1443.
KESSLER F, RUDMANN D. Technological aspects of flexible CIGS solar cells and modules[J]. Solar Energy, 2004, 77(6):685-695.
KALTENBRUNNER M, WHITE M S, GLOWACKI E D, et al.. Ultrathin and lightweight organic solar cells with high flexibility[J]. Nat. Commun., 2012, 3:770-1-7.
LAW D C, EDMONDSON K M, SIDDIQI N, et al.. Lightweight, flexible, high-efficiency Ⅲ-Ⅴ multijunction cells[C]. Proceedings of The Conference Record of The 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, Waikoloa, HI, USA, 2006:1879-1882.
张奇灵, 尧舜, 杨翠柏, 等. 不同周期数的GaInAs/GaAsP多量子阱太阳能电池[J]. 发光学报, 2016, 37(6):701-705. ZHANG Q L, YAO S, YANG C B, et al.. GaInAs/GaAsP multiple quantum well solar cells with different periods[J]. Chin. J. Lumin., 2016, 37(6):701-705. (in Chinese)
KIM M S, YUN J H, YOON K H, et al.. Fabrication of flexible CIGS solar cell on stainless steel substrate by co-evaporation process[J]. Solid State Phenom., 2007, 124-126:73-76.
吕菲, 赵权, 刘春香, 等. Ge单晶片的酸性腐蚀特性分析[J]. 半导体技术, 2008, 33(12):1077-1079. LV F, ZHAO Q, LIU C X, et al.. Analysis of acid etching on Ge wafers[J]. Semicond. Technol., 2008, 33(12):1077-1079. (in Chinese)
0
Views
226
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution