Improving The Performance of Inverted Planar Heterojunction Perovskite Solar Cells via Poly(n-vinylcarbazole) as Additive in Electron Transporting Layer
|更新时间:2020-08-12
|
Improving The Performance of Inverted Planar Heterojunction Perovskite Solar Cells via Poly(n-vinylcarbazole) as Additive in Electron Transporting Layer
Chinese Journal of LuminescenceVol. 38, Issue 9, Pages: 1210-1216(2017)
作者机构:
1. 天津理工大学显示材料与光电器件教育部重点实验室 天津,300384
2. 天津大学化工学院 天津,300072
3. 中国电子科技集团第18 研究所 天津,300384
4. 天津理工大学材料科学与工程学院天津市光电显示材料与器件重点实验室 天津,300384
作者简介:
基金信息:
Supported by National Natural Science Foundation of China (51402214,61504097);Natu
MIAO Ya, DONG Su-juan, LIU Shao-wei etc. Improving The Performance of Inverted Planar Heterojunction Perovskite Solar Cells <em>via</em> Poly(n-vinylcarbazole) as Additive in Electron Transporting Layer[J]. Chinese Journal of Luminescence, 2017,38(9): 1210-1216
MIAO Ya, DONG Su-juan, LIU Shao-wei etc. Improving The Performance of Inverted Planar Heterojunction Perovskite Solar Cells <em>via</em> Poly(n-vinylcarbazole) as Additive in Electron Transporting Layer[J]. Chinese Journal of Luminescence, 2017,38(9): 1210-1216 DOI: 10.3788/fgxb20173809.1210.
Improving The Performance of Inverted Planar Heterojunction Perovskite Solar Cells via Poly(n-vinylcarbazole) as Additive in Electron Transporting Layer
An electron-rich poly(n-vinylcarbazole) (PVK) was applied to dope the[6
6]-phenyl-C
61
-butyric acid methyl ester (PCBM) to explore the influence of PVK on the electron transfer layer of planar heterojunction perovskite solar cells. Under the optimized PVK doping mass fraction of 4%
the power conversion efficiency (PCE) of the CH
3
NH
3
PbI
3
perovskite solar cells is enhanced from (5.110.14)% to (9.080.46)%. According to the surface morphology study of the electron transport layer
PVK doping improves the coverage and quality of PCBM layer onto the rough perovskite layer
and this is beneficial for the interfacial contact of the CH
3
NH
3
PbI
3
PCBM films and the top Al electrode
which results in the decrease of leakage current. Moreover steady-state PL analysis shows that the electron-rich PVK have a better passivation effect on the trap states at the perovskite surface or crystal boundaries as a material of interfacial modification of cathodes
thus can apparently decrease the charge recombination of the perovskite solar cells.
关键词
Keywords
references
LEE M M, TEUSCHER J, MIYASAKA T, et al.. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012, 338(6107):643-647.
GIORGI G, FUJISAWA J I, SEGAWA H, et al.. Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite:a density functional analysis[J]. J. Phys. Chem. Lett., 2013, 4(24):4213-4216.
EPERON G E, STRANKS S D, MENELAOU C, et al.. Formamidinium lead trihalide:a broadly tunable perovskite for efficient planar heterojunction solar cells[J]. Energy Environ. Sci., 2014, 7(3):982-988.
STRANKS S D, EPERON G E, GRANCINI G, et al.. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 2013, 342(6156):341-344.
YIN W J, SHI T T, YAN Y F. Unique properties of halide perovskites as possible origins of the superior solar cell performance[J]. Adv. Mater., 2014, 26(27):4653-4658.
KOJIMA A, TESHIMA K, SHIRAI Y, et al.. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J. Am. Chem. Soc., 2009, 131(17):6050-6051.
YU J C, KIM D B, BAEK G, et al.. High-performance planar perovskite optoelectronic devices:a morphological and interfacial control by polar solvent treatment[J]. Adv. Mater., 2015, 27(23):3492-3500.
ZHAO Y X, ZHU K. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications[J]. Chem. Soc. Rev., 2016, 45(3):655-689.
LI X, BI D Q, YI C Y, et al.. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells[J]. Science, 2016, 353(6294):58-62.
BI D Q, TRESS W, DAR M I, et al.. Efficient luminescent solar cells based on tailored mixed-cation perovskites[J]. Sci. Adv., 2016, 2(1):e1501170-1-7.
SALIBA M, MATSUI T, SEO J Y, et al.. Cesium-containing triple cation perovskite solar cells:improved stability, reproducibility and high efficiency[J]. Energy Environ. Sci., 2016, 9(6):1989-1997.
WANG Q, SHAO Y C, DONG Q F, et al.. Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process[J]. Energy Environ. Sci., 2014, 7(7):2359-2365.
XU J X, BUIN A, IP A H, et al.. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes[J]. Nat. Commun., 2015, 6:7081-1-8.
SHAO Y C, YUAN Y B, HUANG J S. Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells[J]. Nat. Energy, 2016, 1:15001-1-6.
李建丰, 赵创, 张恒, 等. 利用PVP添加剂提高钙钛矿太阳能电池光伏性能[J]. 发光学报,2016, 37(1):56-62. LI J F, ZHAO C, ZHANG H, et al.. Enhancement of the photovoltaic performance of CH3NH3PbI3 perovskite solar cells by using polyvinylpyrrolidone additive[J]. Chin. J. Lumin., 2016, 37(1):56-62. (in English)
ZHANG K C, YU H, LIU X D, et al.. Fullerenes and derivatives as electron transport materials in perovskite solar cells[J]. Sci. China Chem., 2017, 60(1):144-150.
LIU X D, JIAO W X, LEI M, et al.. Crown-ether functionalized fullerene as a solution-processable cathode buffer layer for high performance perovskite and polymer solar cells[J]. J. Mater. Chem. A, 2015, 3(17):9278-9284.
BAI Y, YU H, ZHU Z L, et al.. High performance inverted structure perovskite solar cells based on a PCBM:polystyrene blend electron transport layer[J]. J. Mater. Chem. A, 2015, 3(17):9098-9102.
ZHU Z L, XUE Q F, HE H X, et al.. A PCBM electron transport layer containing small amounts of dual polymer additives that enables enhanced perovskite solar cell performance[J]. Adv. Sci., 2016, 3(9):1500353-1-7.
DONG S J, WAN Y Y, WANG Y L, et al.. Polyethylenimine as a dual functional additive for electron transporting layer in efficient solution processed planar heterojunction perovskite solar cells[J]. RSC Adv., 2016, 6(63):57793-57798.
ETGAR L, GAO P, XUE Z S, et al.. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells[J]. J. Am. Chem. Soc., 2012, 134(42):17396-17399.
SHAO Y C, XIAO Z G, BI C, et al.. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells[J]. Nat. Commun., 2014, 5:5784-1-7.