YUE Zhi-fu, WU Yong, LI Xi-feng etc. Bending Stability of Flexible Low Temperature Poly-silicon Thin-film Transistors[J]. Chinese Journal of Luminescence, 2017,38(9): 1205-1209
YUE Zhi-fu, WU Yong, LI Xi-feng etc. Bending Stability of Flexible Low Temperature Poly-silicon Thin-film Transistors[J]. Chinese Journal of Luminescence, 2017,38(9): 1205-1209 DOI: 10.3788/fgxb20173809.1205.
Bending Stability of Flexible Low Temperature Poly-silicon Thin-film Transistors
The bias stability of the flexible thin-film transistors under various bending radii was investigated. The thin-film transistors with p-type low temperature poly-silicon channel layers were fabricated on polyimide substrate. The changing region of the bending radius was from 15 mm to 3 mm. For the stretch bending
the threshold voltage kept the same with the flat(
V
th
=-1.34 V)
the mobility reduced from 45.65 cm
2
/(Vs) to 45.17 cm
2
/(Vs)
and I
on
/I
off
increased. For the compress bending
the transfer curve well kept the same with the flat. When the minimum bending radius was 3 mm
the device was tested under the positive and negative bias stress
and showed good stability. The experiment results indicate that the flexible LTPS-TFTs have fine performance and stability.
关键词
Keywords
references
CHEN J L, LIU C T. Technology advances in flexible displays and substrates[J]. IEEE Access, 2013, 1:150-158.
AKINWANDE D, PETRONE N, HONE J. Two-dimensional flexible nanoelectronics[J]. Nat. Commun., 2014, 5:5678.
LIU K, YAO W H, WANG D Y, et al.. A study of intrinsic amorphous silicon thin film deposited on flexible polymer substrates by magnetron sputtering[J]. J. Non-Cryst. Solids, 2016, 449:125-132.
QIN G X, YUAN H C, YANG H J, et al.. High-performance flexible thin-film transistors fabricated using print-transferrable polycrystalline silicon membranes on a plastic substrate[J]. Semicond. Sci. Technol., 2011, 26(2):025005-1-6.
VAN DER WILT P C, KANE M G, LIMANOV A B, et al.. Low-temperature polycrystalline silicon thin-film transistors and circuits on flexible substrates[J]. MRS Bull., 2006, 31(6):461-465.
LEE H Y, YE W H, LIN Y H, et al.. Performance investigation of amorphous InGaZnO flexible thin-film transistors deposited on PET substrates[J]. J. Disp. Technol., 2014, 10(9):792-796.
LIU J, BUCHHOLZ D B, CHANG R P H, et al.. High-performance flexible transparent thin-film transistors using a hybrid gate dielectric and an amorphous zinc indium tin oxide channel[J]. Adv. Mater., 2010, 22(21):2333-2337.
ZOCCO A T, YOU H, HAGEN J A, et al.. Pentacene organic thin-film transistors on flexible paper and glass substrates[J]. Nanotechnology, 2014, 25(9):094005-1-7.
CHEN C Y, LEE J W, WANG S D, et al.. Negative bias temperature instability in low-temperature polycrystalline silicon thin-film transistors[J]. IEEE Trans. Electron Dev., 2006, 53(12):2993-3000.
PENG I H, LIU P T, WU T B. Effect of bias stress on mechanically strained low temperature polycrystalline silicon thin film transistor on stainless steel substrate[J]. Appl. Phys. Lett., 2009, 95(4):041909-1-3.
LEE W G, LIM T H, JANG J. Flexibility of low temperature polycrystalline silicon thin-film transistor on tungsten foil[J]. Jpn. J. Appl. Phys., 2011, 50(3S):03CB03.
CHOI M C, KIM Y, HA C S. Polymers for flexible displays:from material selection to device applications[J]. Progr. Polym. Sci., 2008, 33(6):581-630.
GAO X Y, LIN L, LIU Y C, et al.. LTPS TFT process on polyimide substrate for flexible AMOLED[J]. J. Disp. Technol., 2015, 11(8):666-669.
KUOP C, JAMSHIDI-ROUDBARI A, HATALIS M. Effect of mechanical strain on mobility of polycrystalline silicon thin-film transistors fabricated on stainless steel foil[J]. Appl. Phys. Lett., 2007, 91(24):243507-1-3.