ZHANG Yu-ting, WANG Zhuo, SUN Yang etc. Growth and Stability Properties of Rubrene Thin Films[J]. Chinese Journal of Luminescence, 2017,38(8): 1047-1055
ZHANG Yu-ting, WANG Zhuo, SUN Yang etc. Growth and Stability Properties of Rubrene Thin Films[J]. Chinese Journal of Luminescence, 2017,38(8): 1047-1055 DOI: 10.3788/fgxb20173808.1047.
Growth and Stability Properties of Rubrene Thin Films
Growth and stability properties of rubrene thin films on silicon dioxide substrate were investigated by atomic force microscopy. At a low deposition rate and a low substrate temperature
the rubrene molecules have sufficient diffusion time for the horizontal growth of thin film
and the thin films with better continuity and uniformity can be obtained. However
at a fast evaporation rate and a high substrate temperature
the rubrene thin films change into vertical growth mode
and the dot islands are obtained. The rubrene thin films of horizontal growth show substability properties at annealing and ambient conditions. With the increase of annealing temperature and time under ambient conditions
the spontaneous mass transmission occurrs for the rubrene molecules. The vertical transfer occurrs and the thin films change into dot islands. The model of growth and substability properties of rubrene thin films on silicon dioxide substrate are obtained. The results imply that the force between rubrene molecules and silicon dioxide substrate is weaker than that among rubrene molecules.
关键词
Keywords
references
赵宇. 红荧烯单晶材料与器件的制备及特性研究[D]. 济南:山东大学, 2014. ZHAO Y. The Preparation and Characteristics of Rubrene Single Crystal Materials and Devices[D]. Jinan:Shandong University, 2014. (in Chinese)
TAKEYA J, YAMAGISHI M, TOMINARI Y, et al.. Very high-mobility organic single-crystal transistors with in-crystal conduction channels[J]. Appl. Phys. Lett., 2007, 90(10):102120-1-3.
ZEIS R, BESNARD C, SIEGRIST T, et al.. Field effect studies on rubrene and impurities of rubrene[J]. Chem. Mater., 2006, 18(2):244-248.
PODZOROV V, MENARD E, BORISSOV A, et al.. Intrinsic charge transport on the surface of organic semiconductors[J]. Phys. Rev. Lett., 2004, 93(8):086602-1-10.
REYES-MARTINEZ M A, CROSBY A J, BRISENO A L. Rubrene crystal field-effect mobility modulation via conducting channel wrinkling[J]. Nat. Commun., 2015, 6:6948-1-7.
BRISENO A L, MANNSFELD S C B, LING M M, et al.. Patterning organic single-crystal transistor arrays[J]. Nature, 2006, 444(7121):913-917.
JEONG S H, CHOI J M, HWANG D K, et al.. Enhanced mobility of rubrene thin-film transistors with a polymer dielectric on plastic substrate[J]. Electrochem. Solid-State Lett., 2007, 10(11):H321-H323.
LUO L, LIU G, HUANG L W, et al.. Solution-based patterned growth of rubrene nanocrystals for organic field effect transistors[J]. Appl. Phys. Lett., 2009, 95(26):263312-1-3.
QIAN X R, WANG T, YAN D H. Transparent organic thin-film transistors based on high quality polycrystalline rubrene film as active layers[J]. Org. Electron., 2013, 14(4):1052-1056.
YOON Y, KIM S, LEE H, et al.. Characterization of rubrene polycrystalline thin film transistors fabricated using various heat-treatment conditions[J]. Thin Solid Films, 2011, 519(16):5562-5566.
DU C, WANG W C, LI L Q, et al.. Growth of rubrene crystalline thin films using thermal annealing on DPPC LB monolayer[J]. Org. Electron., 2013, 14(10):2534-2539.
PARK S W, JEONG S H, CHOI J M, et al.. Rubrene polycrystalline transistor channel achieved through in situ vacuum annealing[J]. Appl. Phys. Lett., 2007, 91(3):033506-1-3.
ZENG X H, WANG L D, DUAN L, et al.. Homoepitaxy growth of well-ordered rubrene thin films[J]. Cryst. Growth Des., 2008, 8(5):1617-1622.
CAMPIONE M, MORET M, RAIMONDO L, et al.. Kinetic phase selection of rubrene heteroepitaxial domains[J]. J. Phys. Chem. C, 2009, 113(49):20927-20933.
CAMPIONE M. Rubrene heteroepitaxial nanostructures with unique orientation[J]. J. Phys. Chem. C, 2008, 112(42):16178-16181.
都昊, 邹凤君, 李一平, 等. -四噻吩薄膜的生长及性能研究[J]. 发光学报, 2015, 36(12):1445-1451. DU H, ZOU F J, LI Y P, et al.. Growth and performance of -quaterthiophene film[J]. Chin. J. Lumin., 2015, 36(12):1445-1451. (in Chinese)
李占国, 张玉婷, 谢强, 等. 基于p-6P异质诱导生长酞菁铜薄膜的NO2传感器[J]. 物理化学学报, 2016, 32(4):1005-1011. LI Z G, ZHANG Y T, XIE Q, et al.. NO2 sensors based on p-6P heterogametic induction growth of copper phthalocyanine thin films[J]. Acta Phys. Chim. Sin., 2016, 32(4):1005-1011. (in Chinese)
YANG J L, WANG T, WANG H B, et al.. Ultrathin-film growth of para -sexiphenyl (Ⅰ):submonolayer thin-film growth as a function of the substrate temperature[J]. J. Phys. Chem. B, 2008, 112(26):7816-7820.
QI Q, YU A F, JIANG P, et al.. Enhancement of carrier mobility in pentacene thin-film transistor on SiO2 by controlling the initial film growth modes[J]. Appl. Surf. Sci., 2009, 255(9):5096-5099.
RAIMONDO L, FUMAGALLI E, MORET M, et al.. Epitaxial interfaces in rubrene thin film heterostructures[J]. J. Phys. Chem. C, 2013, 117(27):13981-13988.
RIBI? P R, KALIHARI V, FRISBIE C D, et al.. Growth of ultrathin pentacene films on polymeric substrates[J]. Phys. Rev. B, 2009, 80:115307.
CHOI J M, JEONG S H, HWANG D K, et al.. Rubrene thin-film transistors with crystalline channels achieved on optimally modified dielectric surface[J]. Org. Electron., 2009, 10(1):199-204.
WANG T, YAN D H. Ultrathin organic semiconductor films-Soft matter effect[J]. Adv. Colloid Interface Sci., 2014, 207:332-346.