浏览全部资源
扫码关注微信
1. 国民核生化灾害防护国家重点实验室 北京,102205
2. 防化研究院 北京,102205
Received:10 January 2017,
Revised:13 April 2017,
Published:05 August 2017
移动端阅览
杜斌, 童朝阳, 刘志伟等. 基于适配体-表面等离子共振的生物传感技术及应用[J]. 发光学报, 2017,38(8): 1039-1046
DU Bin, TONG Zhao-yang, LIU Zhi-wei etc. Research and Application of Biosensing Technology Based on Aptamer-Surface Plasmon Resonance[J]. Chinese Journal of Luminescence, 2017,38(8): 1039-1046
杜斌, 童朝阳, 刘志伟等. 基于适配体-表面等离子共振的生物传感技术及应用[J]. 发光学报, 2017,38(8): 1039-1046 DOI: 10.3788/fgxb20173808.1039.
DU Bin, TONG Zhao-yang, LIU Zhi-wei etc. Research and Application of Biosensing Technology Based on Aptamer-Surface Plasmon Resonance[J]. Chinese Journal of Luminescence, 2017,38(8): 1039-1046 DOI: 10.3788/fgxb20173808.1039.
适配体以其合成、修饰、固定等方面的优势,在生物分子识别领域有广泛的应用。基于表面等离子共振的传感技术具有非标记、无需前处理、实时监测等优点。适配体与表面等离子共振相结合研制的生物传感器在生物传感领域具有重要的应用价值,本文综述了基于适配体-表面等离子共振的生物传感技术及应用。
The aptamers have been widely used in biomolecule recognition because of their advantages of synthesis
modification and immobilization. The sensing technology developed by surface plasmon resonance(SPR) has the advantages of non-labeling
no pretreatment
real-time monitoring. The sensors based on aptamer and SPR have important application values in biosensing techniques. The applications of biosensor based on aptamer-SPR are reviewed in this paper.
王志斌, 韩欢欢, 柴君夫, 等. 基于多孔硅的表面等离子共振传感特性[J]. 发光学报, 2016, 37(9):1152-1158. WANG Z B, HAN H H, CHAI F J, et al.. Prism surface plasmons resonance sensor based on the porous silicon[J]. Chin. J. Lumin., 2016, 37(9):1152-1158. (in Chinese)
栗大超, 李国卿, 张晶鑫, 等. GGBP蛋白修饰的表面等离子共振微创血糖检测仪[J]. 光学精密工程, 2013, 21(9):2333-2339. LI D C, LI G Q, ZHANG J X, et al.. Minimally-invasive blood glucose detection instrument based on surface plasmon resonance sensor decorated with GGBP[J]. Opt. Precision Eng., 2013, 21(9):2333-2339. (in Chinese)
CHOI S W, CHANG H J, LEE N, et al.. A surface plasmon resonance sensor for the detection of deoxynivalenol using a molecularly imprinted polymer[J]. Sensors, 2011, 11(9):8654-8664.
CHOI S W, CHANG H J, LEE N, et al.. Detection of mycoestrogen zearalenone by a molecularly imprinted polypyrrole-based surface plasmon resonance (SPR) sensor[J]. J. Agric. Food Chem., 2009, 57(4):1113-1118.
ALTINTAS Z, GITTENS M, GUERREIRO A, et al.. Detection of waterborne viruses using high affinity molecularly imprinted polymers[J]. Anal. Chem., 2015, 87(13):6801-6807.
GUPTA G, SINGH P K, BOOPATHI M, et al.. Molecularly imprinted polymer for the recognition of biological warfare agent staphylococcal enterotoxin B based on surface plasmon resonance[J]. Thin Solid Films, 2010, 519(3):1115-1121.
HERRANZ S, BOCKOV M, MARAZUELA M D, et al.. An SPR biosensor for the detection of microcystins in drinking water[J]. Anal. Bioanal. Chem., 2010, 398(6):2625-2634.
HAUGHEY S A, CAMPBELL K, YAKES B J, et al.. Comparison of biosensor platforms for surface plasmon resonance based detection of paralytic shellfish toxins[J]. Talanta, 2011, 85(1):519-526.
GUPTA G, SINGH P K, BOOPATHI M, et al.. Surface plasmon resonance detection of biological warfare agent staphylococcal enterotoxin B using high affinity monoclonal antibody[J]. Thin Solid Films, 2010, 519(3):1171-1177.
王周平, 张维潇. 适配体及其研究进展[J]. 食品与生物技术学报, 2013, 32(9):897-906. WANG Z P, ZHANG W X. Aptamer and related progress[J]. J. Food Sci. Biotechnol., 2013, 32(9):897-906. (in Chinese)
NAKAMURA Y, ISHIGURO A, MIYAKAWA S. RNA plasticity and selectivity applicable to therapeutics and novel biosensor development[J]. Genes Cells, 2012, 17(5):344-364.
LIU S, ZHANG X Y, LUO W X, et al.. Single-molecule detection of proteins using aptamer-functionalized molecular electronic devices[J]. Angew. Chem. Int. Ed. Engl., 2011, 50(11):2496-2502.
FANG X H, TAN W H. Aptamers generated from cell-SELEX for molecular medicine:a chemical biology approach[J]. Acc. Chem. Res., 2010, 43(1):48-57.
XIA T, YUAN J H, FANG X H. Conformational dynamics of an ATP-binding DNA aptamer:a single-molecule study[J]. J. Phys. Chem. B, 2013, 117(48):14994-15003.
XU L, ZHANG Z, ZHAO Z L, et al.. Cellular internalization and cytotoxicity of aptamers selected from lung cancer cell[J]. Am. J. Biomed. Sci., 2013, 5(1):47-58.
SHEN Q L, XU L, ZHAO L B, et al.. Specific capture and release of circulating tumor cells using aptamer-modified nanosubstrates[J]. Adv. Mater., 2013, 25(16):2368-2373.
GAO Y M, YU X Y, XUE B B, et al.. Inhibition of hepatitis C virus infection by DNA aptamer against NS2 protein[J]. PLoS One, 2014, 9(2):e90333-1-10.
王晓萍, 洪夏云, 詹舒越, 等. 表面等离子体共振传感技术和生物分析仪[J]. 化学进展, 2014, 26(7):1143-1159. WANG X P, HONG X Y, ZHAN S Y, et al.. Surface plasmon resonance sensing technology and bioanalytical instrument[J]. Prog. Chem., 2014, 26(7):1143-1159. (in Chinese)
周玲, 王明华, 王剑平, 等. 传感器表面的适配体固定方法及其在生物传感器中的研究进展[J]. 分析化学, 2011, 39(3):432-438. ZHOU L, WANG M H, WANG J P, et al..Application of biosensor surface immobilization methods for aptamers[J]. Chin. J. Anal. Chem., 2011, 39(3):432-438. (in Chinese)
BIANCO M, SONATO A, DE GIROLAMO A, et al.. An aptamer-based SPR-polarization platform for high sensitive OTA detection[J]. Sens. Actuators B:Chem., 2017, 241:314-320.
LOO F C, NG S P, WU C M L, et al.. An aptasensor using DNA aptamer and white light common-path SPR spectral interferometry to detect cytochrome-c for anti-cancer drug screening[J]. Sens. Actuators B:Chem., 2014, 198:416-423.
WANG B, LOU Z, PARK B, et al.. Surface conformations of an anti-ricin aptamer and its affinity for ricin determined by atomic force microscopy and surface plasmon resonance[J]. Phys. Chem. Chem. Phys., 2015, 17(1):307-314.
JANARDHANAN P, MELLO C M, SINGH B R, et al.. RNA aptasensor for rapid detection of natively folded type A botulinum neurotoxin[J]. Talanta, 2013, 117:273-280.
LEE S J, YOUN B S, PARK J W, et al.. SSDNA aptamer-based surface plasmon resonance biosensor for the detection of retinol binding protein 4 for the early diagnosis of type 2 diabetes[J]. Anal. Chem., 2008, 80(8):2867-2873.
PARK J W, LEE S J, CHOI E J, et al.. An ultra-sensitive detection of a whole virus using dual aptamers developed by immobilization-free screening[J]. Biosens. Bioelectron., 2014, 51:324-329.
NGUYEN V T, SEO H B, KIM B C, et al.. Highly sensitive sandwich-type SPR based detection of whole H5Nx viruses using a pair of aptamers[J]. Biosens. Bioelectron., 2016, 86:293-300.
LIU Y Z, WU Z T, ZHOU G H, et al.. Simple, rapid, homogeneous oligonucleotides colorimetric detection based on non-aggregated gold nanoparticles[J]. Chem. Commun., 2012, 48(26):3164-3166.
HU J T, NI P J, DAI H C, et al.. A facile label-free colorimetric aptasensor for ricin based on the peroxidase-like activity of gold nanoparticles[J]. RSC Adv., 2015, 5(21):16036-16041.
LIU R D, HUANG Y S, MA Y L, et al.. Design and synthesis of target-responsive aptamer-cross-linked hydrogel for visual quantitative detection of ochratoxin A[J]. ACS Appl. Mater. Interf., 2015, 7(12):6982-6990.
WANG J L, MUNIR A, ZHU Z Z, et al.. Magnetic nanoparticle enhanced surface plasmon resonance sensing and its application for the ultrasensitive detection of magnetic nanoparticle-enriched small molecules[J]. Anal. Chem., 2010, 82(16):6782-6789.
CHANG C C, LIN S, LEE C H, et al.. Amplified surface plasmon resonance immunosensor for interferon-Gamma based on a streptavidin-incorporated aptamer[J]. Biosens. Bioelectron., 2012, 37(1):68-74.
ZHU Z L, FENG M X, ZUO L M, et al.. An aptamer based surface plasmon resonance biosensor for the detection of ochratoxin A in wine and peanut oil[J]. Biosens. Bioelectron., 2015, 65:320-326.
PARK J H, BYUN J Y, MUN H, et al.. A regeneratable, label-free, localized surface plasmon resonance (LSPR) aptasensor for the detection of ochratoxin A[J]. Biosens. Bioelectron., 2014, 59:321-327.
WANG R H, ZHAO J J, JIANG T S, et al.. Selection and characterization of DNA aptamers for use in detection of avian influenza virus H5N1[J]. J. Virol. Methods, 2013, 189(2):362-369.
BAI H, WANG R H, HARGIS B, et al.. A SPR aptasensor for detection of avian influenza virus H5N1[J]. Sensors, 2012, 12(9):12506-12518.
WANG Z Z, WILKOP T, XU D K, et al.. Surface plasmon resonance imaging for affinity analysis of aptamer-protein interactions with PDMS microfluidic chips[J]. Anal. Bioanal. Chem., 2007, 389(3):819-825.
KIM Y H, KIM J P, HAN S J, et al.. Aptamer biosensor for lable-free detection of human immunoglobulin E based on surface plasmon resonance[J]. Sens. Actuators B:Chem., 2009, 139(2):471-475.
WANG J L, MUNIR A, ZHOU H S. Au NPs-aptamer conjugates as a powerful competitive reagent for ultrasensitive detection of small molecules by surface plasmon resonance spectroscopy[J]. Talanta, 2009, 79(1):72-76.
HENSELEIT A, SCHMIEDER S, BLEY T, et al.. A compact and rapid aptasensor platform based on surface plasmon resonance[J]. Eng. Life Sci., 2011, 11(6):573-579.
WANG J L, ZHU Z Z, MUNIR A, et al.. Fe3O4 nanoparticles-enhanced SPR sensing for ultrasensitive sandwich bio-assay[J]. Talanta, 2011, 84(3):783-788.
POLONSCHⅡ C, DAVID S, TOMBELLI S, et al.. A novel low-cost and easy to develop functionalization platform. Case study:aptamer-based detection of thrombin by surface plasmon resonance[J]. Talanta, 2010, 80(5):2157-2164.
TRAN D T, KNEZ K, JANSSEN K P, et al.. Selection of aptamers against Ara h 1 protein for FO-SPR biosensing of peanut allergens in food matrices[J]. Biosens. Bioelectron., 2013, 43:245-251.
WU B, JIANG R, WANG Q, et al.. Detection of C-reactive protein using nanoparticle-enhanced surface plasmon resonance using an aptamer-antibody sandwich assay[J]. Chem. Commun., 2016, 52(17):3568-3571.
0
Views
376
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution